

FIBERGLASS REBAR IN CAST-IN-PLACE RESIDENTIAL WALLS

Jonathan Fischer P.E.

Fiberglass Rebar Engineer / Business Development

Owens Corning Infrastructure Solutions

AN INFINITE WORLD OF POSSIBILITIES

Fiberglass Rebar in Cast-In-Place Residential Walls


Description:

Fiberglass Rebar has already established itself as an economical installed reinforcing material versus traditional carbon steel in residential/commercial slab-on-ground applications, and now it can be properly implemented into the vertical wall systems as well. Using a blending of the ACI 332 code for structural concrete along with the ACI 440 guide for fiberglass rebar design, the path to using this cost saving material is now readily available. In addition to being structurally capable of meeting the project demands, fiberglass rebar also offers the opportunity to save money due to its lower installed cost versus steel and the improved durability that comes with a non-corrosive product. In this session we will learn about the material properties of fiberglass rebar, how the material design is completed, and what the potential labor ramifications are to the owner and contractor. In addition, a readily available software tool that streamlines the process will be on display to exhibit the ease of conversion.

Learning Objectives:

- Recognizing the material benefits of fiberglass rebar
- Understanding the design of vertical poured basement walls using existing codes/guides
- Learning about the potential cost benefits of fiberglass rebar in this space
- Seeing firsthand a demonstration of design software for proper implementation

OWENS CORNING We build market leading businesses – global in scope, human in scale

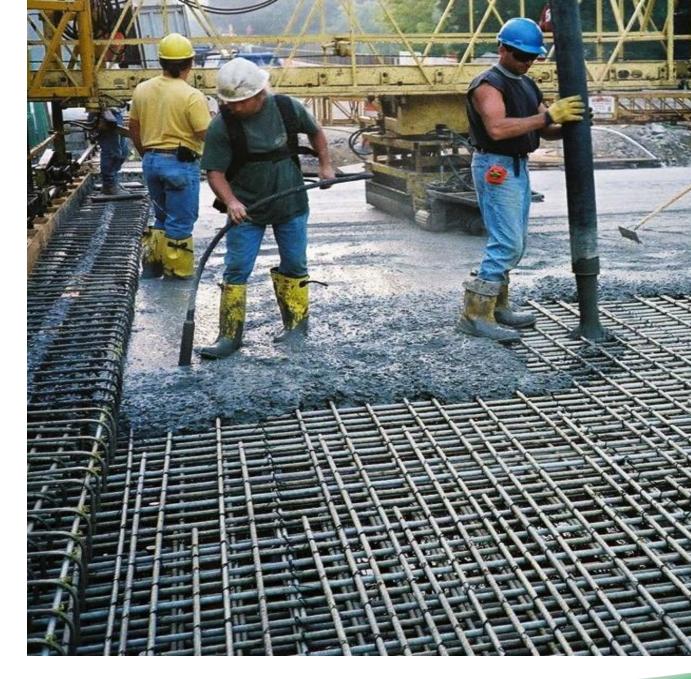
ACMA Composites Technology Day

3

WHY AND WHERE SHOULD FIBERGLASS REBAR BE USED?

• Concrete structures susceptible to corrosion:

- Steel corrosion by chlorides / salts
- Aggressive agents that lower concrete Ph
- Slender structures with minimum cover concrete
- Concrete structures requiring non-ferrous reinforcement due to:
 - Electro-magnetic considerations
 - Thermal non-conductivity
- Where machinery will "consume" the reinforced concrete member (i.e., mining and tunneling)
- In low demand applications, where labor savings can result in project savings while also providing a longer lasting element



KEY BENEFITS COMPARED TO TRADITIONAL REBAR

- Extended Service Life
 - Improved Durability
 - No Corrosion means no spalling/concrete degradation
- Ease of Installation
- Higher Tensile Strength
- No need for expensive overlays or admixtures
- Labor Savings
 - Lightweight 1/4th of steel
 - Upwards of 50% reduction of man hours
- Improved Working Conditions
- Transparent to magnetic fields
- Electrically & thermally non-conductive
- More Stable Pricing

nposites

ACMA Composites Technology Day

CONCRETE REINFORCEMENT MARKET SEGMENTS

Each segment involves specific opportunities for steel rebar replacement

ACMA Composites Technology Day

FIBERGLASS REINFORCEMENT SOLUTIONS – MULTIPLE PRODUCTS

CIVIL / HEAVY CONSTRUCTION

20+ YEARS

- ASTM D7957 Fiberglass Rebar
 - Durable, economic concrete reinforcement solutions vs. corrosion resistant steel reinforcement
 - Owens Corning[®] MATEENBAR[™] Fiberglas[™] Rebar
 - Owens Corning[®] Fiberglas[™] Dowel Bars

RESIDENTIAL / LIGHT COMMERCIAL

- Economic solution for crack mitigation vs. black steel in slab-on-ground applications
- Residential Walls and Footings
- PINKBAR[®] Fiberglas[™] Rebar

omposites

Always Demand an ASTM D7957 Compliant Product!

General Concrete Reinforcement

Crack Mitigation and Residential Walls

ACMA Composites Technology Day

Owens Corning purchased Hughes Brothers in 2017. OC has been a major supplier of continuous filament glass fibers to the fiberglass rebar industry for 20+ years."

VALUE PROPOSITION

No Corrosion

- More Durable
- Less Cost for Owners

4x Less Weight 1:1

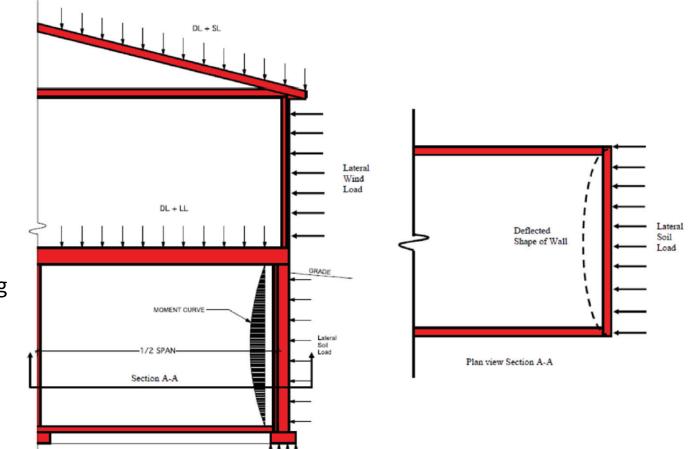
- Faster Installation
- Easier to Haul
- More Jobs & Revenue

Lower Installed Cost, Stable Price

• More Money in Wallet

RESIDENTIAL WALLS

- Cast in place concrete "Basement" Walls
- Single mat reinforcement
- Designed as an "Uncracked Section"
- Structural by nature



WHY IS THIS "STRUCTURAL CONCRETE" ?

- Forces applied to the house are supported by the foundation walls & footings
 √Snow Loads
 √Wind
 √Furnishings & Occupants (Parties)
- Earth pressure from the soil outside the basement walls
 √Hydraulic pressure from moisture
 √Freeze Thaw
- Due to structural nature and differing material properties, a direct replacement or a downsizing may NOT be appropriate with fiberglass rebar
- Structure should be designed and adhere to applicable codes and standards

GUIDE TO RESIDENTAL CONCRETE CONSTRUCTION (ACI 332.1R-18)

Fig. 4.3.1.1—Load diagram.

CODES & STANDARDS

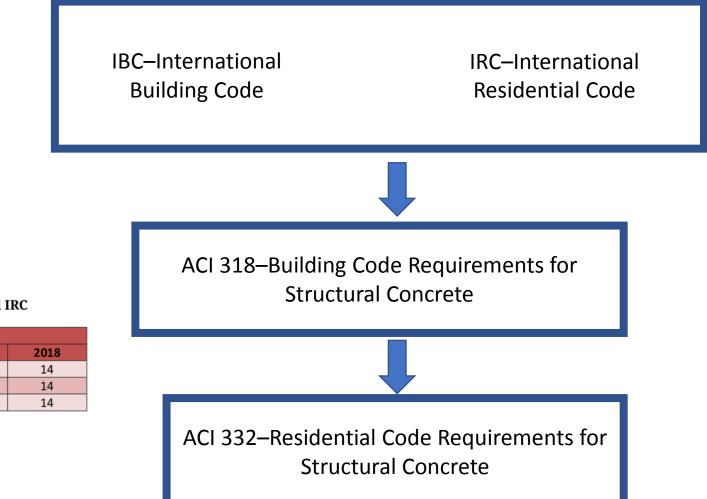


Table 3 – Editions of ACI Documents Referenced in the IBC and IRC

ACI	Editions of the IBC and IRC									
Document	2003	2006	2009	2012	2015	2018				
216.1	97	97	07	07	14	14				
318	02	05	08	11	14	14				
332	NA ¹	NA ¹	08	10	14	14				

¹ ACI 332 was not available prior to the 2008 edition.

osites

ACI 332 – PROVIDES PRESCRIPTIVE DESIGN TABLES

R4.2—Reinforcement

R4.2.1 Refer to Table R4.2.1 for properties of bars.

Table R4.2.1—Steel reinforcing bar information

				Development
	Nominal	Nominal	Nominal	length (30db),
Bar size, no.	diameter, in.	area, in.2	weight, lb/ft	in.
3	0.375	0.11	0.376	11.25
4	0.500	0.20	0.668	15.00
5	0.625	0.31	1.043	18.75
6	0.750	0.44	1.502	22.50

Based on ACI 318 and using steel rebar

In the vast majority of homes, the "engineering" of the wall has already been done by ACI 332.

ACI 332 – PROVIDES PRESCRIPTIVE DESIGN TABLES

36 RESIDENTIAL CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 332-14) AND COMMENTARY

CODE	COMMENTARY
------	------------

(f) One layer of vertical reinforcement placed at the tensile face, maintaining concrete cover in accordance with Item (b) of construction requirements

Table 8.2.1.3a—Vertical reinforcing bar spacing for concrete basement walls

	$f_{c}' = 2$	500 psi				Maxim	ım equiv	alent flu	id press	ure of so	il, psf/ft			
	$f_y = 40,000 \text{ psi}$		30		45		60			100				
			Minin	um wall	thick-	Minimum wall thick-		Minimum wall thick-			Minimum wall thick-			
Unsupported	Unbalanced			ness, in.			ness, in		ness, in.				ness, in.	
wall height, ft	backfill, ft	Reinforcing bar	7.5	9.5	11.5	7.5	9.5	11.5	7.5	9.5	11.5	7.5	9.5	11.5
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain
	5	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain
		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	12	Plain	Plain
8	6	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	18	Plain	Plain
		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	26	Plain	Plain
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	14	Plain	Plain	8	11	Plain
	7	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	22	Plain	Plain	13	17	Plain
		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	31	Plain	Plain	18	24	Plain
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	17	Plain	Plain
	5	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	26	Plain	Plain
		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	37	Plain	Plain
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	11	15	Plain
	6	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	17	22	Plain
		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	24	31	Plain
9	7	No. 4 @ in.	Plain	Plain	Plain	17	Plain	Plain	13	Plain	Plain	8	10	Plain
		No. 5 @ in.	Plain	Plain	Plain	27	Plain	Plain	20	Plain	Plain	12	16	Plain
		No. 6 @ in.	Plain	Plain	Plain	37	Plain	Plain	28	Plain	Plain	17	22	Plain
		No. 4 @ in.	Plain	Plain	Plain	13	Plain	Plain	10	13	Plain	6	8	9
	8	No. 5 @ in.	Plain	Plain	Plain	20	Plain	Plain	15	20	Plain	10	12	15
		No. 6 @ in.	Plain	Plain	Plain	28	Plain	Plain	21	28	Plain	14	16	21
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	16	Plain	Plain
	5	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	25	Plain	Plain
		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	35	Plain	Plain
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	17	Plain	Plain	10	14	Plain
	6	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	27	Plain	Plain	16	21	Plain
		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	37	Plain	Plain	22	29	Plain
		No. 4 @ in.	Plain	Plain	Plain	16	Plain	Plain	12	Plain	Plain	7	9	12
10	7	No. 5 @ in.	Plain	Plain	Plain	25	Plain	Plain	18	Plain	Plain	11	14	18
		No. 6 @ in.	Plain	Plain	Plain	35	Plain	Plain	26	Plain	Plain	15	20	25
		No. 4 @ in.	18	Plain	Plain	12	Plain	Plain	9	12	Plain	6	7	9
	8	No. 5 @ in.	27	Plain	Plain	18	Plain	Plain	13	18	Plain	10	11	13
		No. 6 @ in.	38	Plain	Plain	25	Plain	Plain	19	25	Plain	14	15	19
		No. 4 @ in.	14	Plain	Plain	9	12	Plain	7	9	11	5	5	7
	9	No. 5 @ in.	21	Plain	Plain	14	19	Plain	10	14	17	8	8	10
		No. 6 @ in.	30	Plain	Plain	20	26	Plain	15	20	24	11	12	14

a) The term "plain" refers to concrete where no vertical reinforcement is required other than reinforcement consistent with 8.2.7 and where horizontal reinforcement is required in accordance with 8.2.8 and 8.2.9.

b) This table is applicable to walls of specified height, unbalanced backfill height, equivalent fluid pressure of soil, concrete strength, and the yield strength of reinforcement c) This table is applicable only when the structure is not assigned to SDC D, E, or F. d) Values in this table are derived in accordance with ACI 318 and 8.2.

An ACI Standard **Residential Code** Requirements for Structural Concrete (ACI 332-14) and Commentary

Reported by ACI Committee 332

 \cap \cap

osites

ACI 332 – WHAT ARE THE VARIABLES

- Wall Height
 - Unsupported Wall Height
 - Backfill Height
- Concrete Strength
- Rebar Grade
 - Rebar Size
 - Rebar Spacing
- Wall Thickness
- Maximum Earth Pressure of soil

36 RESIDENTIAL CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 332-14) AND COMMENTARY

CODE

ACMA Composites Technology Day

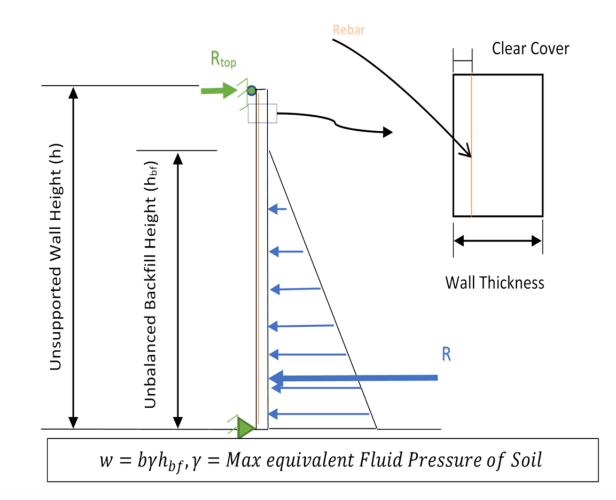
COMMENTARY

14

(f) One layer of vertical reinforcement placed at the tensile face, maintaining concrete cover in accordance with Item (b) of construction requirements

Table 8.2.1.3a—Vertical reinforcing bar spacing for concrete basement walls

	$f_{c}' = 2$	500 psi	Maximum equivalent fluid pressure of soil, psf/ft											
	$f_y = 40$,000 psi	30		45		60			100				
Unsupported	Unbalanced			um wall ness, in.			Minimum wall thick- ness, in.		Minimum wall thick- ness, in.			Minimum wall thick- ness, in.		
wall height, ft	backfill, ft	Reinforcing bar	7.5	9.5	11.5	7.5	9.5	11.5	7.5	9.5	11.5	7.5	9.5	11.5
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain
	5	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain
		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	12	Plain	Plain
8	6	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	18	Plain	Plain
		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	26	Plain	Plain
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	14	Plain	Plain	8	11	Plain
	7	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	22	Plain	Plain	13	17	Plain
		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	31	Plain	Plain	18	24	Plain
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	17	Plain	Plain
	5	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	26	Plain	Plain
		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	37	Plain	Plain
		No. 4 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	11	15	Plain
	6	No. 5 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	17	22	Plain
0		No. 6 @ in.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	24	31	Plain
9		No. 4 @ in.	Plain	Plain	Plain	17	Plain	Plain	13	Plain	Plain	8	10	Plain
	7	No. 5 @ in.	Plain	Plain	Plain	27	Plain	Plain	20	Plain	Plain	12	16	Plain



DESIGN PHILOSOPHY

- Simply Supported
- Triangular Soil Load
- Fiberglass rebar vertical and horizontal reinforcement
- Design Aspects:
 - Strength

osites

- Deflection
- Creep Rupture
- Crack Control

HOW TO IMPLEMENT FIBERGLASS REBAR

- Use prescriptive ACI 332 guide based on ACI 318
 - Adapt for fiberglass rebar using ACI 440
- 332 presently uses A 615 Steel
 - We use ASTM D7957 as called for by 440.1R
- Project Specific Requirements:
 Meet Strength and Serviceability demands from ACI 332
 - Satisfy ACI 440.1R
- Provide Building Code Official/Engineer/Owner with supporting calculations for the specific variables. i.e. justification for use

STRENGTH COMPARISON BETWEEN STEEL REBAR AND FIBERGLASS REBAR:

Geometrical Properties:

- Wall thickness (t)= 7.5 in
- Clear cover (cc) = 0.75 in

Concrete:

- Concrete compressive strength (f'c)= 3 ksi
- β1=0.85 (at crushing)
- $Ec = 57\sqrt{3000} = 3122.02 \ ksi$

GFRP bar:

- Bar designation number = #4
- Bar diameter = 0.5 in
- Bar Area= 0.2 in2
- FRP modulus of elasticity (Ef)= 6500 ksi
- FRP ultimate tensile force (Ffu *) = 21.6 kips
- FRP ultimate tensile stress (ffu *) = 108 ksi

Steel	Fiberglass Rebar
$0.85 * f'b\beta c c1$ $A_{s} =$ $f' c \rho_{s} = 0.85 c \beta1$ f $c = 0.276 in$ $f d y$	$f' c \rho f = \alpha c$ $\varepsilon_{fu} = 0.0133 c = 0.49 in$ $\varepsilon_{cf} = \varepsilon_{fu} c = 0.00108 d-c$ f d y $\alpha = \varepsilon_{cf} - 1 (\varepsilon_{cf}) 2$ $\varepsilon' c 3 \varepsilon' c 1 - 1 \varepsilon_{cf}$ $\beta = 2 \times 3 12 \varepsilon' c 1 1 - 1 \varepsilon_{cf} 3 \varepsilon' c$ $\alpha = 0.5246$ $\beta = \beta_1 = 0.3575 2$
$\rho_s = 0.0015315$	$ \rho_f = 0.00137 $
$M = \phi \rho f b d_2 (1 - \beta_1 c) u_{sy} 2 d_2$ $M_u = 0.7 * 0.0015315 * 60 * 12 * 7.5 * (1 - 0.85 \ 0.276)$ 2 7.5	$M = \phi \rho f \ b d_2 (1 - \beta_1 c)$ u ffu 2d 2 Mu = 0.55 * 0.00137 * 0.8 * 108 * 12 * 7.5 * (1 - 0.3575 0.49) 7.5
$M_u = 32k.in$	$M_u = 32k.in$

Note: BOTH Strength and Serviceability need to be considered

FIBERGLASS REBAR RESIDENTIAL WALL DESIGNER

🔥 FRP Residential Wall Designer		— —
File		
Geometry Wall Unsupported Wall Height= 9 ft Unbalanced Backfill Height= 7 ft	Material Concrete Compressive Strength (fc) 4 ksi Modulus of Basticity (Ec) = 3605 ksi ☑ ACI Default	Rtop
Cross Section Wall Thickness= 7.5 in Clear Cover= 1.5 in	Tensile Strength (fr) = 0.474 ksi ACI Default Strain at Max. Compressive Stress ($c^{+}c^{-}$) = 0.0019 1.71 f/c/Ec Max. Comp. Strain (c_{cu}) = 0.003 ACI Default	Unsupported Wall Height (h) Mail Height (h) Mail Lipickness
Loads Max Equivalent Fluid Pressure of Soil= 60 psf./ft Allowed Crack Width Parameters Crack Width= 0.028 in	FRP Manufactured FRP Choose Owens Coming PinkBar ✓ PINKBAR [™] #4 Modulus of Elasticity (E∉) = 6700 ksi Ultimate Rupture Strain 0197	Wall Thickness Wall Thickness $w = byh_{bf}, \gamma = Max equivalent Fluid Pressure of Soil$
Bond Dependant Coefficient (kb)= 1 Deflection ✓ ✓ ACI-318 Default (l/240) and long term deflection of 5 years Allowed Deflection= in	(ɛʃu") = Type = Flexural Face Exposure Conditions: Concrete not exposed to earth and weather ∨	Design
Shrinkage and Temperature Horizontal Reinforcement Shrinkage and Temperature Reinforcement Ratio Guidlines: A ratio of 0.0018 is suggested for a libral limit based on ACI318-19 for steel. While a ratio of 0.0036 is suggested for a conservative limit based on ACI440.1R-15 for GFRP.	Bar Number Bar Diameter Vertical Desired Bar diameter= 0.5 in (Default=0.5 in) Horizontal Desired Bar diameter= 0.5 in (Default=0.5 in)	Report

FIBERGLASS REBAR RESIDENTIAL WALL DESIGNER

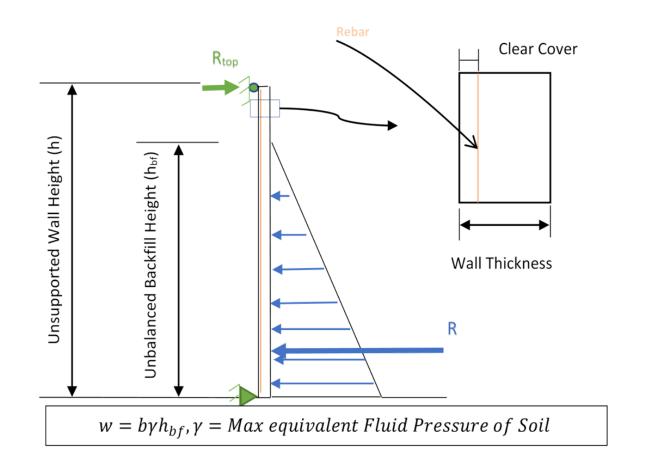
🕂 FRP Residential Wall Designer

osites

– 🗆 🗙

19

File		
Geometry Wall	Material Concrete	
Unsupported Wall Height= 9 ft Unbalanced Backfill Height= 7 ft	Compressive Strength (f'c) 4 ksi 4 Modulus of Elasticity (Ec) = 3605 ksi \checkmark ACI Default	Rtop Rtop
Cross Section Wall Thickness= 7.5 in Clear Cover= 1.5 in	Tensile Strength (fr) = 0.474 ksi \checkmark ACI DefaultStrain at Max. Compressive Stress ($\epsilon'c$) = 0.0019 \checkmark 1.71 f'c/EcMax. Comp. Strain (ϵ_{Cu}) = 0.003 \checkmark ACI Default	orred Wall Height (h) Mall Height (hori) Mall Luickness
Loads Max Equivalent Fluid Pressure of Soil= 60 psf/ft	FRP Manufactured FRP Choose Owens Corning Pink Bar ~	Unbalanced Backfill Height (h) Mall Llickness
Allowed Crack Width Parameters Crack Width= 0.028 in Bond Dependant Coefficient (kb)= 1	PINKBAR*** #4 Modulus of Elasticity (E_{ℓ}) = 0197 ($e_{\ell u}^*$) = Type =	5 $w = byh_{bf}, y = Max \ equivalent \ Fluid \ Pressure \ of \ Soil$
Deflection ACI-318 Default (I/240) and long term deflection of 5 years Allowed Deflection= in	Flexural Face Exposure Conditions: Concrete not exposed to earth and weather	Design
Shrinkage and Temperature Horizontal Reinforcement Shrinkage and Temperature Reinforcement Ratio = 0.0018 Guidlines: A ratio of 0.0018 is suggested for a libral limit based on ACI318-19 for steel. While a ratio of 0.0036 is suggested for a conservative limit based on ACI440.1R-15 for GFRP.	Bar Number Image: Bar Diameter Vertical Desired Bar diameter= 0.5 in (Default=0.5 in) Horizontal Desired Bar diameter= 0.5 in (Default=0.5 in)	Report
Dessiles	Vertical	Design Apps


ACMA Composites Technology Day

GEOMETRY

Geometry Wall		
Unsupported Wall Height=	9	ft
Unbalanced Backfill Height=	7	ft
Cross Section		
Wall Thickness=	7.5	in
Clear Cover=	1.5	in

LOADS

omposites

MATERIAL

Material Concrete			
Compressive Strength (f'c)	4	ksi	
Modulus of Elasticity ($E_\mathcal{C}$) =	3605	ksi	ACI Default
Tensile Strength (f_r) =	0.474	ksi	ACI Default
Strain at Max. Compressive Stress (ε'c) =	0.0019		☑ 1.71 f'c/Ec
Max. Comp. Strain (ε _{cu}) =	0.003		ACI Default
FRP Manufactured FRP			
Choose Owens Coming) PinkBar		~
PINKBAR*** #4			
Modulus of Elasticity (E∦) =	6700	ks	i
Ultimate Rupture Strain (ε∦u*) =	.0197		
Type =	Glass 🗸		
Flexural Face Exposure Cond	litions:		
Concrete exposed to earth	and weather	•	~
🔿 Bar Numb	ber 🦲) Bar	Diameter
Vertical Desired Bar diameter=	0.5	in	(Default=0.5 in)
Horizontal Desired Bar diameter=	0.5	in	(Default=0.5 in)

FIBERGLASS REBAR RESIDENTIAL WALL DESIGNER

Results:	r Diameter (in.)	Reinforcement for strength condition	Cracking Condition (under service load)	εfu	Vertical Reinforcemer Spacing (in.)	nt Failure Modes	Concrete Cover Condition
Inserted Bar:	0.5	Needs Reinforcement	Uncracked	0.01576		FRP Rupture	dc ≤ ACI440 limit
ASTM* Bars:	0.25	Needs Reinforcement	Uncracked	0.01532	3	FRP Rupture	dc ≤ ACI440 limit
	0.375	Needs Reinforcement	Uncracked	0.01477	6	FRP Rupture	dc ≤ ACI440 limit
	0.5	Needs Reinforcement	Uncracked	0.01329	10	FRP Rupture	dc ≤ ACI440 limit
	0.625	Needs Reinforcement	Uncracked	0.01155	14	FRP Rupture	dc ≤ ACI440 limit
	0.75	Needs Reinforcement	Uncracked	0.01144	20	FRP Rupture	dc ≤ ACI440 limit
	0.875	Needs Reinforcement	Uncracked	0.01110	26	FRP Rupture	dc ≤ ACI440 limit
	1	Needs Reinforcement	Uncracked	0.01041	32	FRP Rupture	dc ≤ ACI440 limit
	1.128	Needs Reinforcement	Uncracked	0.01009	39	FRP Rupture	dc ≤ ACI440 limit
	1.27	Needs Reinforcement	Uncracked	0.00952	46	FRP Rupture	dc ≤ ACI440 limit
		Horizontal Reinforcement Spacing (in.)=	orizontal Reinforcement:	Bar diametel	= 0.500 in @ 12	in	

Notes:

- -ASTM*: In accordance to Designation: D7957/D7957M 17, Modulus of Elasticity=6500 ksi, Glass Bars, Kb=1.4
- -"Spacing" in red means spacing is bigger than 48 inches (ACI 332 max. allowable spacing)
- -"Concrete Cover Condition" in green complies with ACI 440 limit, red color indicates that it does not comply with ACI 440 limit. -dc: concrete cover measured from the maximum tension face to the centroid of the tensile bars.

oosites

REPORT

AEDA LLC FRP Residential Wall Designer Wednesday, 14 October 2020

Design of flexural wall reinforced with FRP bars and subjected to a triangular soil pressure by AEDA LLC Case name: report.pdf

Table of Contents
1. Objective
2. Design Configuration
3. Sectional Parameters
3.1. Cross Section
3.2. Reinforcement
4. Material Properties
4.1. Concrete
4.2. Fiber Reinforced Polymer (FRP)
5. Wall Configuration
6. Loads
7. Structural Analysis
8. FRP Design Procedure
8.1. Design Limitations
8.2. Material Limitations
8.3. Gross Sectional Properties
8.4. Cracked Conditions
8.5. Creep Rupture
8.6. Strength
8.7. Deflection
8.8. Crack Control
8.9. Shrinkage and Temperature Reinforcement
9. Results
10. Notations

REPORT

<u>9. Results</u>

Reinforcement Condition		
Needs Reinforcement		
Controlling Design Mode		
FRP Rupture		
Cracked Condition under Service load		
Uncracked		
Concrete Cover condition		
N/A (Uncracked)		

Parameter	Value	Unit
Vertical bar diameter	0.3750	in
Vertical bar Area	0.1104	in²
FRP depth (df)	6.19	in
Final vertical reinforcement spacing	8.00	in
Horizontal bar diameter	0.3750	in
Horizontal reinforcement ratio	0.0036	
Horizontal reinforcement spacing	4.00	in

SUMMARY

- Residential basement walls considered structural in nature and require a level of engineering validation
- Fiberglass rebar's low weight, competitive price point, and non-corrosive aspect make it an appealing product for contractors
- Fiberglass rebar can be effectively used in residential basement walls by combining the ACI 332 code with the existing ACI 440 and ASTM D7957 documents
- Software readily available to ease design, resulting in a full engineering report including calculations
- In due time, tables able to be generated similar to those displayed within ACI 332 for steel rebar

ALWAYS ASK FOR <u>ASTM D7957</u> COMPLIANT MATERIALS!



Jonathan Fischer P.E. Fiberglass Rebar Engineer/Business Development

Owens Corning | Infrastructure Solutions

Cell: 308-999-0858 jonathan.fischer@owenscorning.com

