

Bridge Deck Reinforced with Glass Fiber Reinforced Polymer Bars (GFRP)

Borna Hajimiragha

CEO

B&B FRP Manufacturing Inc. (MST-BAR) – Toronto, Canada

Outline

GFRP Bars in Ontario: History & Use

Why GFRP in Bridge deck?

Durability of GFRP: MTO perspective

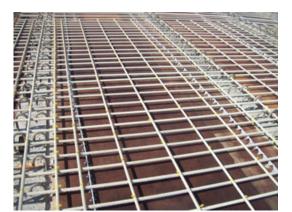
What has changed lately? Product and Market

GFRP Bars in bridge deck

Rational design of bridge deck

What's Next?

» GFRP in Ontario


☐ Use of GFRP started in mid 90's

□ Trial projects implemented in 2005

☐ CHBDC first adopted GFRP as a primary Rebar in 2006

☑ MTO first adopted GFRP as part of corrosion protection policy in 2008

GFRP in Ontario

☑ MTO has constructed over 400 Bridges with GFRP Including:

- Precast Deck Panels between girders
- □ Cast in place on girders(simply supported or semi-continuous)
- ☑ PI2/TL4 and PL3/TL5 Barrier walls
- □ Topping slab over side by side box girders
- ☑ Stirrups in Precast box girders
- Overlays and side walks
- Progressed beyond trial stage

Examples of Full GFRP Bridge Decks

- HWY 11/7 CPR Overhead Ouimet
- Third Street Bridge Over the Thames River
- Whiteman's Creek Precast Deck, Hwy 24
- Humber River Bridge Cast-in-place deck, Hwy 401
- Nestor Falls Hwy 71 Precast Deck
- Rainy Lake/Noden Causeway PC Deck
- Chukuni River Bridge Precast Deck Hwy 105
- Ottawa Queensway bridges cast-in-place deck
- Warden Avenue Hwy 401 overlay
- Bonnechere River Bridge cast-in-place exposed, Hwy 60
- Nipigon River Bridge

Why GFRP in Bridge Deck?

☑ Lighter

- ☑ More rebar on a truck (4x)
- Less back injury and workers don't tire out by the end of the week
- ☑ Faster schedule
- Less than half manpower
- ☑ Greener World!

posites

**Greener Word: Less Carbon footprint, Less gas/fuel usage, Easier demolition and end up better end of life than steel!

Why GFRP in Bridge Deck?

☑ Lighter Precast Deck

- ☑ Longer precast panel due to weight
- Lower cost of transportation
- ☑ Greener world!

omposites

Why GFRP in Bridge Deck?

☑ Rust Free

- More Saving in long term
- In One year Canadian Government spent \$46B on costs associated to corrosion of rebar(US MARKET 10x)
- Safer infrastructure for generations
- Less demolition and rehabilitation which result in less greenhouse gas pumped into atmosphere
- Tremendous initial cost saving by removing CNI
- Greener World!

osites

>>> Durability of GFRP(MTO Perspective)

☑ Alkaline attack in concrete

For high durability GFRP products, more recent tests show possibly 10 to 12% loss of strength in 75 years for typical application in Ontario (worse in warm and humid climate)

CHBDC 2014 requires Φ = 0.55 at ULS

CHBDC 2019 requires Φ = 0.65 at ULS

☑ Creep rupture

□ for sustained load > 45% f_{pu} [New generation of GFRPs]

CHBDC requires Φ = 0.25 at SLS

AASHTO has different resistance and durability factors, but the end result is similar:

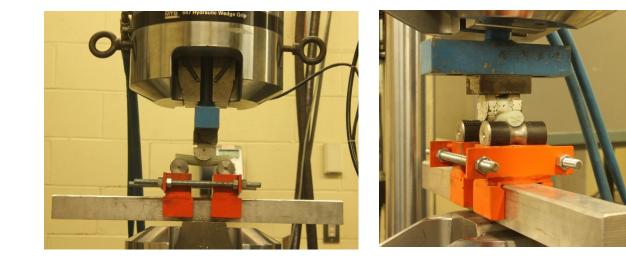
Environmental reduction factor $C_E = 0.7$ (apply to guaranteed Fu) Creep rupture reduction factor $C_C = 0.3$ Fatigue rupture reduction factor $C_f = 0.25$ Strength resistance factor $\Phi = 0.55$ to 0.75

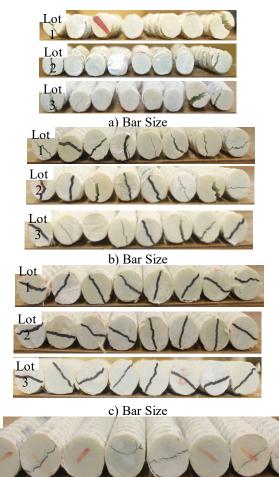
>>> Durability of GFRP(MTO Perspective)

Accelerated aging and natural aging condition

$$\frac{N}{C} = 0.098 e^{0.0558T}$$

Temperature (°C)	Solution (pH 12.6-12.8)	Accelerated ages (days)	Natural ages (years)
40	Alkaline	150	13
40	Alkaline	300	27
60	Alkaline	150	100
60	Alkaline	300	199


>>>> Durability of GFRP?


- Most Recent Alkali Resistance Interlaminar Shear Strength(ILSS)
- Apparent Horizontal Shear Strength by Short-Beam Method of Glass Fibre-Reinforced Polymer (GFRP) Bars in High pH Alkaline Solution at 60 °C – Reference and Conditioned Bars #3, #4, #5, and #8

echnology Dav

Durability of GFRP Bars

12

d) Bar Size #8

Durability of GFRP Bars

Bar Size	Lot #	Specimens	Apparent Horizontal Shear Strength (MPa)	Strength Retention R _{et}
#3	1	Reference	48	96%
		Conditioned	46	
	2	Reference	49	96%
		Conditioned	47	
	3	Reference	47	96%
		Conditioned	45	
#4	1	Reference	53	92%
		Conditioned	49	
	2	Reference	52	96%
		Conditioned	50	
	3	Reference	51	96%
		Conditioned	49	
#5	1	Reference	70	99%
		Conditioned	69	
	2	Reference	71	96%
		Conditioned	68	
	3	Reference	70	99%
		Conditioned	69	
#8	1	Reference	60	97%
		Conditioned	58	
	2	Reference	59	97%
		Conditioned	57	
	3	Reference	60	97%
		Conditioned	58	

Composites

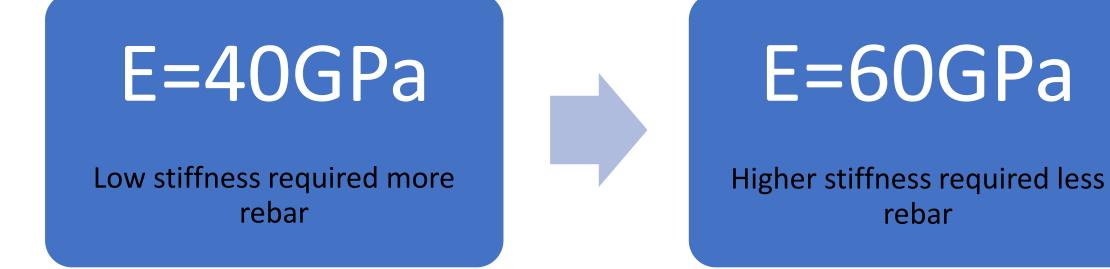
ACMA Composites Technology Day

13

Degrade in Alkaline environment

Boron Free Glass

Never degrade


Polyester

Degrade in Alkaline environment

Vinyl-Ester

Never degrade Better elongation Higher strength

T=110-160MPa

Low Shear Strength

T=200-250MPa

Higher Shear Strength

δ=750MPa

Average Tensile Strength

High Tensile Strength

oosites

δBond<10MPa Low Bond Strength

T>25 MPa High Bond Strength

δ=450MPaLow Bend Strength

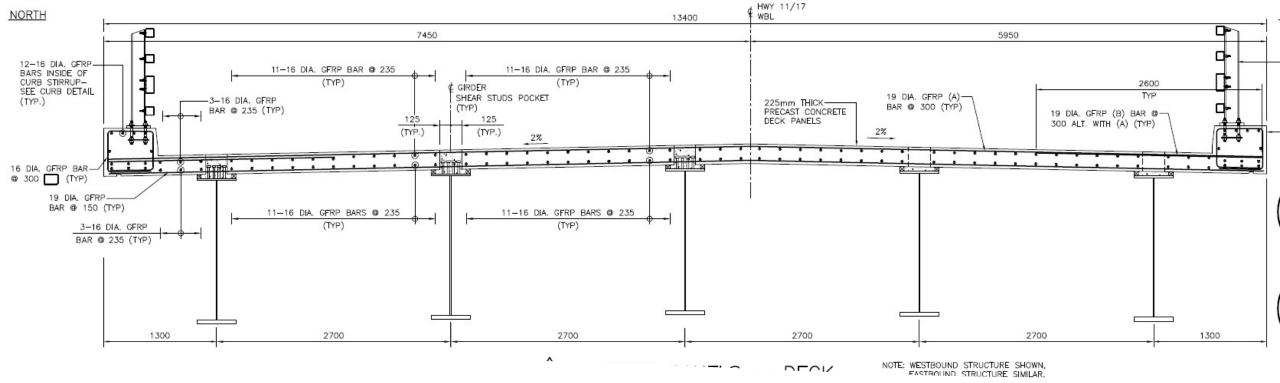
T=700-800 MPa High Bend Strength

ACMA Composites Technology Day

Corrosion Niche Market

Corrosive applications

Any Concrete Market


Due to Weight, Price & Strength

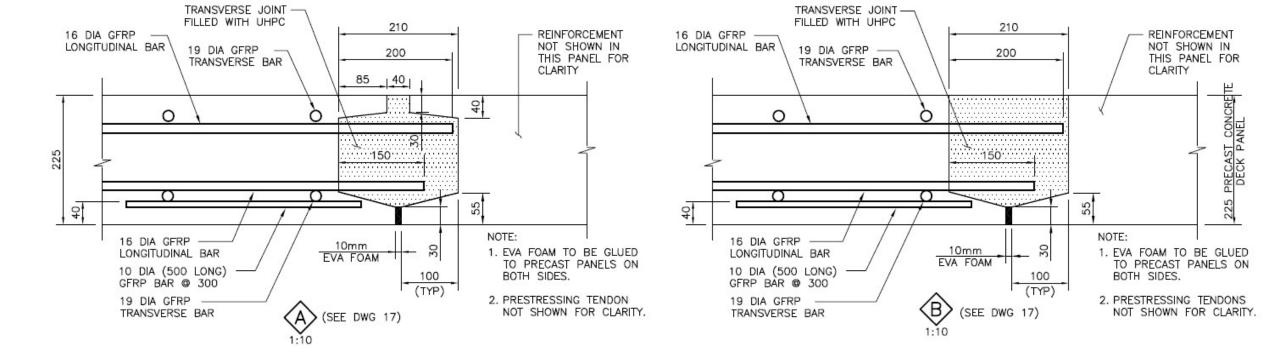
>>> GFRP in Bridge Deck

- Pre-Cast panels with UHPC joints
 - Cast in Place over Girders

CON-

Pre-Cast panels with UHPC joints

bosites


Advantages

- Save Construction Time
- ☑ QA/QC
- ☑ Durability
- Less Change in ContractPrice

Disadvantages

- ☑ Higher initial cost
- Transportation and handling
- Modification

UHPC= Stronger Connection & Less Overlap

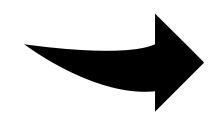
» Rational Design-Deck Slab with GFRP

☑ Started in Ontario from 1979

- Design by either empirical method or flexural methods is allowed (Clause 16.8.8). For simplicity, <u>empirical method</u> can always be used when the conditions for its use are satisfied.
- □ Crack widths need not be checked for the empirical method.(importance of Kb factor)
- ☑ Only use GFRP grades 3 in the deck slab: No Grade 1.
- ☑ No need for Corrosion Inhibitors or other corrosion protection.
- ☑ No need for strengths higher than 30 MPa for a typical slab on girder bridge.

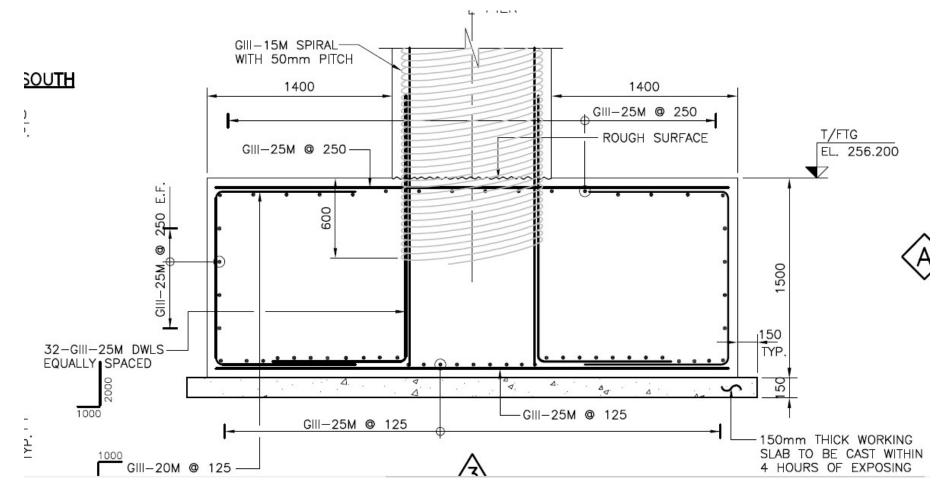
 \square For economy:

- For a deck slab t = 200 mm, use empirical methods for girder spacing over 2.4 m, otherwise flexural methods.
- \square For a deck slab t = 225 mm, use flexural methods.



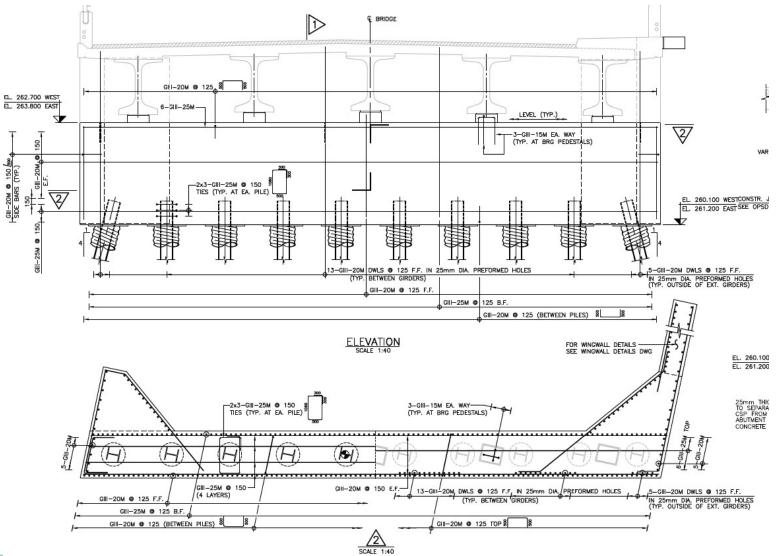
Advantages of Using Empirical Design in Bridge Deck Slab

- Empirical method Can be considered since it would result in a more economical design than traditional method.
- Empirical method could result in material saving by using less reinforcing bar.
- Initial cost of 10% less when using Empirical design method Vs. Traditional method.

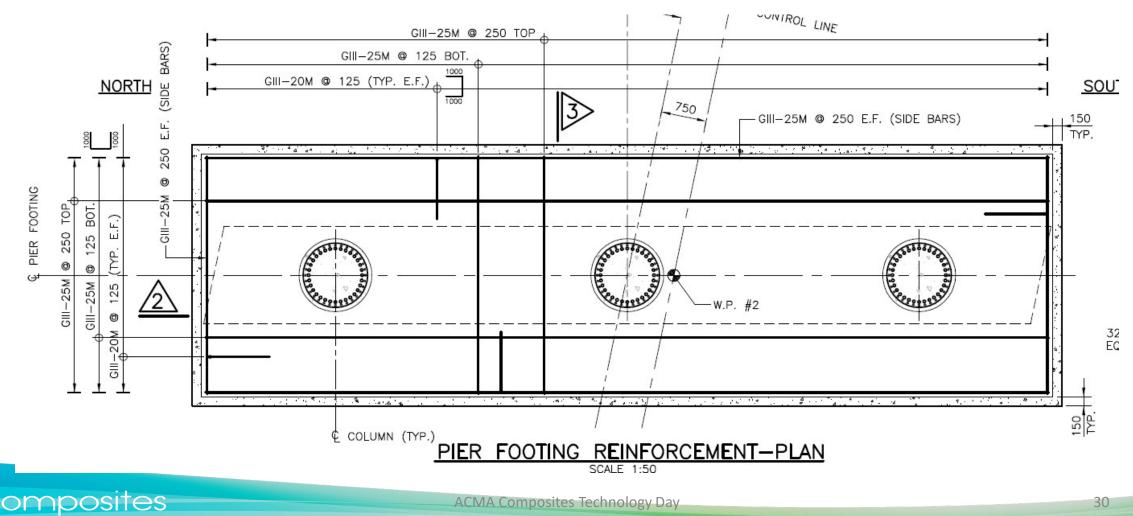


- >>> What's Next?
- ☑ More confident
- ☑ Better QC/QA
- ☑ Better Bent bars
- ☑ More research
- ☑ Lower cost

FULL GFRP BRIDGE in 2021

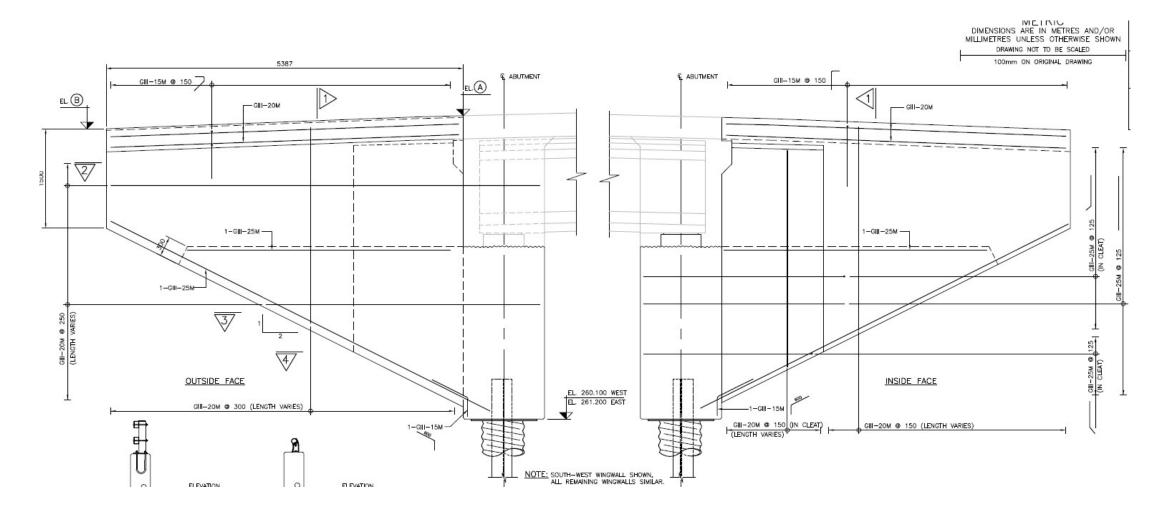


Composites

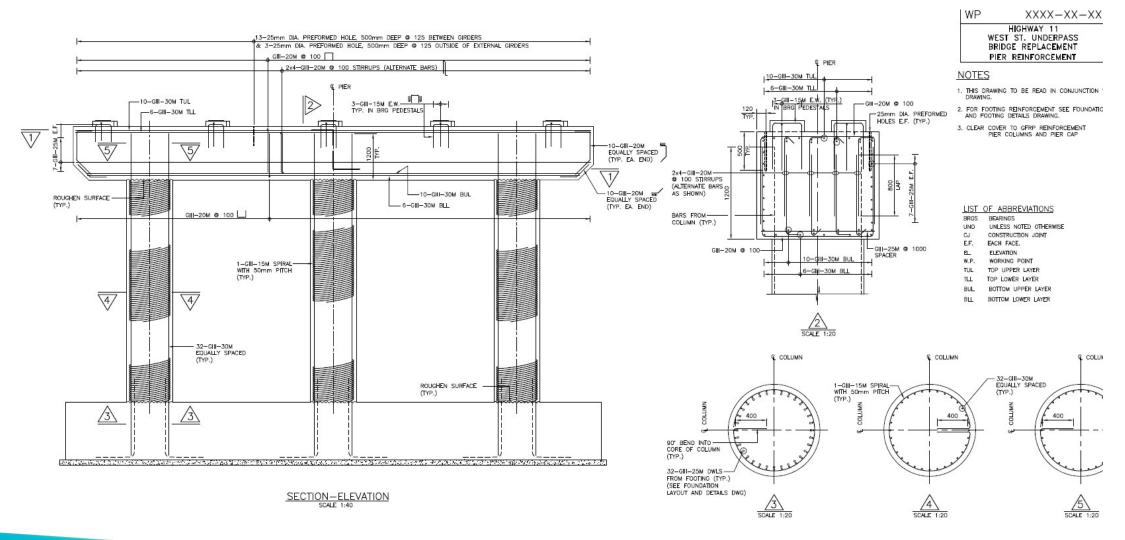

What's Next?

Composites

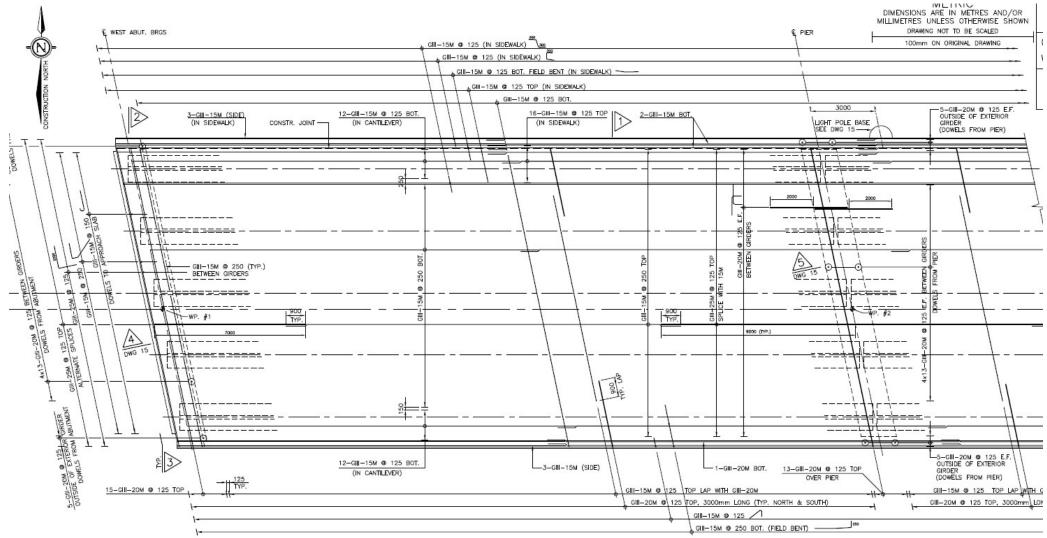
ACMA Composites Technology Day


What's Next?

ACMA Composites Technology Day


30

Composites


ACMA Composites Technology Day

C)omposites

32

Composites

Question & Answer

