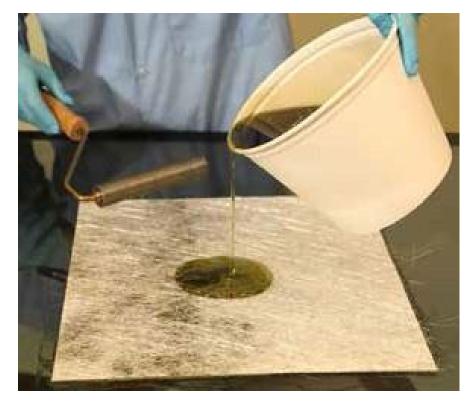
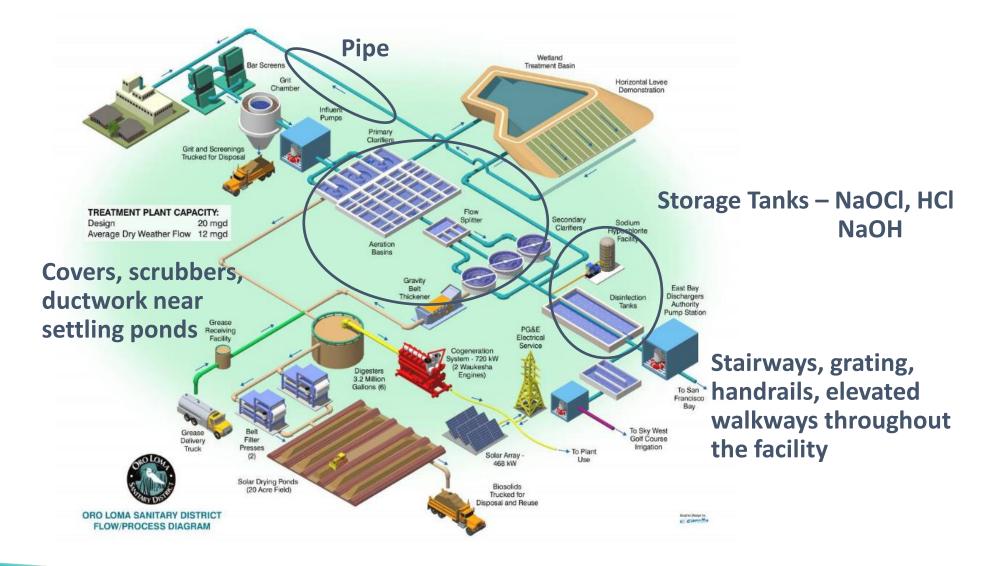


Corrosion Resistant FRP Industrial Equipment

Kevin Lambrych


Manager, INEOS Corrosion Science Center

INEOS Composites

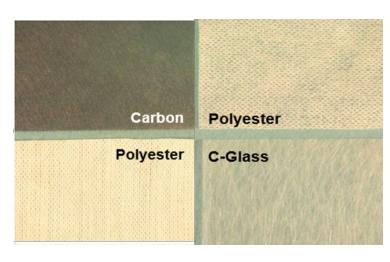

Outline

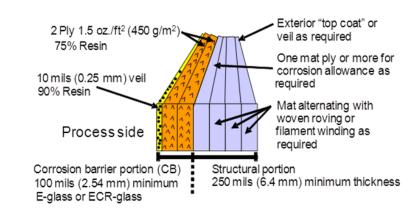
- Wastewater Treatment Process
- Typical environments in wastewater treatment facilities
- Recommended resins and fabrication practices for fiber-reinforced polymer (FRP) in wastewater treatment
- Case Histories
- Summary

FRP – Fiber Reinforced Polymer Industrial fiberglass based on thermoset resin chemistry

FRP in the Wastewater Treatment Process

Typical Environments in Wastewater Treatment


- Chemical Storage and Transport
 - Sodium Hypochlorite
 - Sodium Hydroxide
 - Hydrochloric Acid
 - Fluorosilicic Acid
 - Brine
 - Ferric Chloride / Aluminum Sulfate
- Odor Abatement
 - Hydrogen Sulfide
 - Various Organics
- Corrosive Air Exposure



Importance of Material Selection & Construction

Resin

Corrosion resistance Flame resistance

Heat Resistance Toughness

Glass & Veil

Glass – Strength & Modulus Veil – Resin Richness for Corrosion Resistance

Laminate / CR Barrier

CR Barrier – Protective resin-rich layer Structural layer – To meet Design

Proper material selection & laminate design greatly influences the performance and longevity of process equipment

Typical Environments – Chemical Storage and Treatment

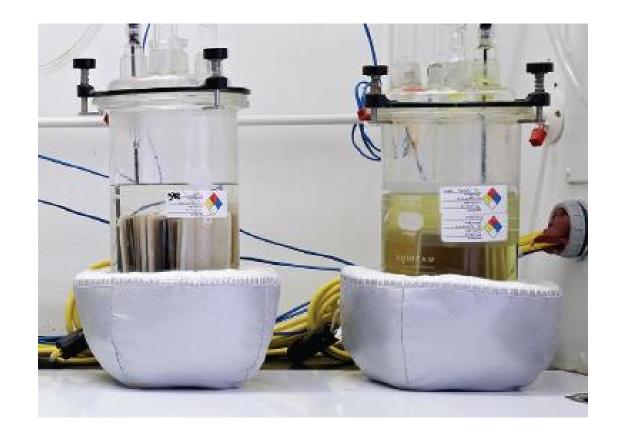
Chemical Storage and Treatment – Tanks

- Sodium Hypochlorite (NaOCl)
- Sodium Hydroxide (NaOH)
- Hydrochloric Acid (HCl)
- Brine
- Ferric Chloride, Aluminum Sulfate
- Fluorosilicic Acid

Sodium Hypochlorite (NaOCl)

 NaOCl (bleach) commonly used to treat effluent

- Storage concentrations
 - 9-18% at ambient temperatures (100°F, 40°C)
- Some facilities generate low concentrations (<1%) of NaOCl on site


- Sodium hypochlorite is very aggressive
- Suitability of FRP depends on
 - NaOCl concentration
 - Stabilization / pH > 11
 - Temperature
 - Metal impurities
 - Hard water
 - Metal promoters
 - Light
- Bleach solutions becoming more aggressive
 - Use of very hard water to make bleach
 - Destabilized bleach more effective in purifying water

Sodium Hypochlorite Corrosion Study

ASTM C-581 Corrosion testing

- Laboratory testing coupons exposed to stabilized NaOCl
 - Concentration: 9 15%
 - Temperature: 120 150°F (50 60°C)
 - Visual and physical property evaluation: 1, 3, 6, 12 months

Sodium Hypochlorite Corrosion Study

- Evaluated three types of resin
 - Bis-A EVER (Derakane[™] 411 epoxy vinyl ester resin)
 - Novolac EVER (Derakane™ 470 novolac epoxy vinyl ester resin)
 - Brominated EVER (Derakane™ 510A and 510B brominated epoxy vinyl ester resin)
- Veil types
 - C-glass
 - Polyester
 - Carbon
- Cure systems (polymerize thermoset resin matrix)
 - Cobalt / DMA / MEKP (Promotor/Accelerator/Initiator)
 - DMA / BPO

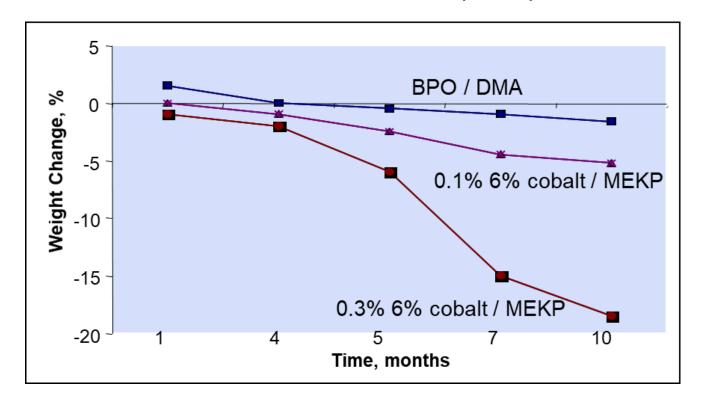
Resin Comparison

• 12% NaOCl at 120°F (50°C) for 12 months

Resin	Bis-A EVER	Novolac EVER	Brominated EVER
Veil	C-glass	C-glass	C-glass
Cure System	BPO/DMA	BPO/DMA	BPO/DMA
Surface Appearance	Slightly flat	No gloss	Glossy
Resin Attack	Slight	Moderate	None

- Brominated Epoxy Vinyl Ester (Brominated EVER) resins performed best
- Bromine appears to protect sites commonly attacked
- Bisphenol-A Epoxy Vinyl Ester (Bis-A EVER) suitable for lower concentrations and temperatures

Veil Comparison


• 10% NaOCl at 150°F (65°C) for 12 months

Resin	Brominated EVER	Brominated EVER	Brominated EVER
Veil	polyester	C-glass	carbon
Cure System	BPO/DMA	BPO/DMA	BPO/DMA
Flex Strength, % retention	29	71	-
Flex Modulus, % retention	26	65	-
Surface Hardness, % retention	0	47	-
Resin Attack	moderate	slight	no veil left after 1 month

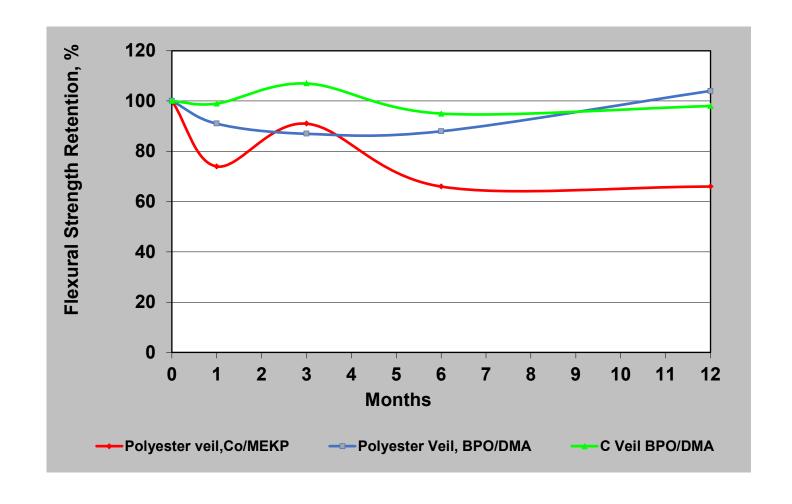
• C-veil performs best at elevated temperatures

Cure System Comparison

Bis-A EVER resin in 5.25% NaOCl at 150°F (65°C)

- DMA/BPO cure system performed best
- Presence of cobalt reduces chemical resistance

Cure System and Veil Comparison


• 12% NaOCl at 120°F (50°C) for 12 months

Resin	Brominated EVER	Brominated EVER	Brominated EVER
Veil	Polyester	Polyester	C-glass
Cure System	Cobalt/MEKP	BPO/DMA	BPO/DMA
Flex Strength, % retention	66	104	93
Flex Modulus, % retention	79	101	93
Surface Hardness, % retention	73	100	98
Surface Appearance	flat	flat	semi-gloss
Resin Attack	moderate	slight	none

- Cobalt in resin increases resin attack
- C-glass veil slightly better than polyester veil (if excess NaOH then polyester veil)

Cure System and Veil Comparison

- Brominated EVER
- 12% NaOCl at 120°F (50°C) for 12 months
- C-glass veil with BPO/DMA performs best

Sodium Hydroxide

- Strong base used for
 - pH Adjustment
 - Metal precipitant
 - Alkaline cleaner
- 10 30% concentrations most aggressive
- Preferred resin
 - Derakane[™] 411 series resins
- Corrosion barrier
 - Two layers of synthetic veil or carbon veil
 - 100 mils (2.5 mm) thick

Hydrochloric Acid

- Strong acid used for
 - pH adjustment
- Preferred resins
 - Derakane[™] 411 and 470 vinyl ester resins
- Corrosion barrier
 - Two layers of C-glass veil
 - 200 mils (5.0 mm) thick
 - Boron-free chopped strand ECR glass

Ferric Chloride, Aluminum Sulfate

- Highly effective coagulants for clarification
- Used for industrial and sanitary wastewater treatment
- FRP is material of choice
- Bis-A epoxy vinyl ester resin can be used up to 212°F (100°C)
- Corrosion barrier
 - One layer of C-glass veil
 - 100 mil (2.5 mm) thick

Brine

- Water with high salt concentration
- On-site production of sodium hypochlorite
- Waste streams
- FRP is material of choice
- Bis-A epoxy vinyl ester resin can be used up to 212°F (100°C)
- Corrosion barrier
 - One layer of C-glass veil
 - 100 mil (2.5 mm) thick

Fluorosilicic Acid

- Additive for water fluoridation
- FRP is material of choice
- Bis-A epoxy vinyl ester resin can be used up to 180°F (80°C), slightly lower temperature with higher concentrations
- Corrosion barrier
 - 2 layers polyester veil
 - 100 mil (2.5 mm) thick

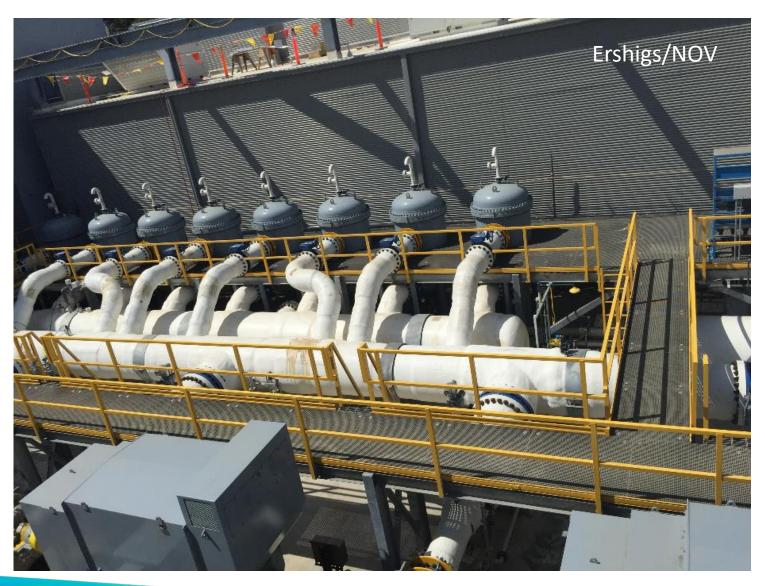
ANSI / NSF 61 Potable Water Equipment Certification

- American National Standards Institute (ANSI) maintains and updates the ANSI / NSF 61 certification
- Many available testing labs and certification bodies, not just the National Sanitation Foundation (NSF)
- Facilities beginning to require ANSI/NSF 61 approval
 - Being required when treating or storing chemicals used for drinking water
 - Resin coupons submitted to NSF
 - Coupons undergo extraction testing
- Bis-A EVER coating systems have ANSI/NSF 61 approval and are commonly used in potable water applications

Case Histories – Chemical Storage

Case History – Sodium Hypochlorite and Sodium Hydroxide Storage Tanks

- Epoxy vinyl ester resin
- Brominated epoxy vinyl ester resin at higher concentration and temperature
- Note building structure provides tanks shade (hypo stability)


Case History - 50% Sodium Hydroxide Storage Tank

- Bis-A epoxy vinyl ester resin
- 8500 gallons at ambient temperature
- Corrosion liner
 - One layer C-glass veil, two layers synthetic veil
 - 116 mils (3 mm) thick
- Installed in 2010
- Fields Point Wastewater Treatment Facility, Providence, RI

Case History – Piping and Header System

- NSF/ANSI 61 certified Bis-A epoxy vinyl ester resin
- Installed at a California desalination plant

Case Histories – Odor Abatement

Odor Abatement – Hydrogen Sulfide

- Settling Tank Covers
- Ductwork
- Scrubbers, Carbon Absorbers
- Commonly used resins
 - Bis-A epoxy vinyl ester resin can be used up to 210°F (80°C)
 - Brominated epoxy vinyl ester resin when flame retardance required
- Corrosion barrier
 - 1 layer C-glass veil
 - 100 mil (2.5 mm) thick

Case History – Odor Control System

- Brominated epoxy vinyl ester resin
- Biological odor control filtering system
- Installed in 2010 at the Orange County Sanitation District, Plant 2 in Huntington Beach, CA
- Treats hydrogen sulfide and other organic compounds released during wastewater treatment process
- 10 ft. diameter x 42 ft. tall (3 m x 13 m)
- Ambient temperature
- 100 mil corrosion liner

Case Histories – Corrosive Air

Case Histories – Corrosive Air Exposure

Grating, Stairs, Handrails

- FRP is material of choice
- Bis-A epoxy vinyl ester resin can be used up to 210°F (100°C)

Pultrusion used for many applications

Summary and Conclusions

Summary – WWTP Resin Selection

Sodium Hypochlorite

- Bis-A EVER lower % and temp
- Brominated EVER at higher % and temp
- 100 mil (2.5 mm) corrosion liner
- 2 layers C-glass veil
- BPO/DMA cure system in corrosion liner
- Post cure

Hydrochloric Acid

- Bis-A EVER , Novolac EVER
- 200 mil (5.0 mm) corrosion liner
- 2 layers C-glass veil
- Post cure

Sodium Hydroxide, Fluorosilicic Acid

- Bis-A EVER
- 100 mil (2.5 mm) corrosion liner
- 2 layers synthetic veil or carbon veil
- Post cure

Brine, Ferric Chloride, Aluminum Sulfate, Hydrogen Sulfide

- Bis-A EVER
- 100 mil (2.5 mm) corrosion liner
- C-glass veil
- Brominated EVER if fire retardance is needed

Conclusions

 Vinyl ester based FRP is material of choice for many wastewater treatment applications

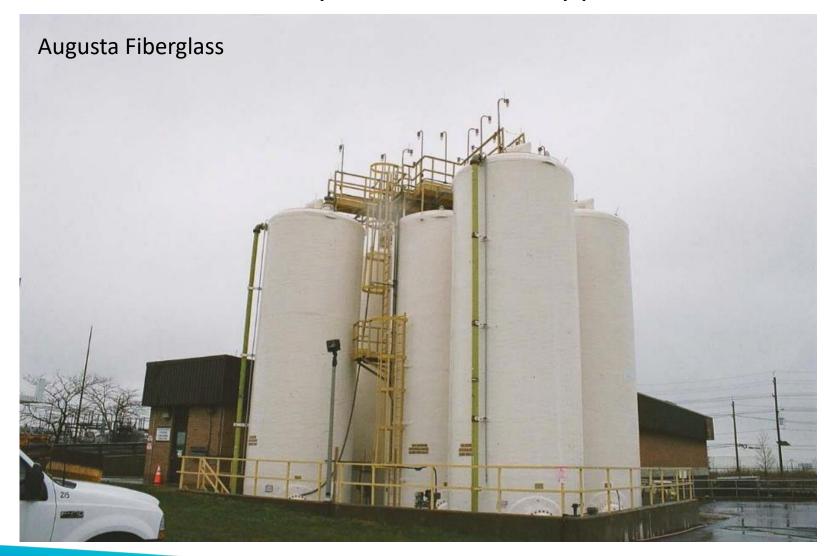
 Resin selection, design, and fabrication of FRP equipment are all key to a long service life

- INEOS technical support allows you to proceed with confidence
 - Resin recommendations based on corrosion testing, years of experience and multiple case histories
 - INEOS Corrosion Science Center derakane@ineos.com

Thank You! Kevin Lambrych

Kevin.Lambrych@ineos.com

614-787-4507


- Feel free to contact me for
 - Lunch and Learn with your team (qualifies for PDH credit)
 - Specification guidance
 - Resin and corrosion barrier recommendations
 - Resin Selection Guide corrosion data for 1000's of applications
 - FRP Fabrication Tips Guide
 - Technical papers and reference materials

Supplemental Information – Case Histories, Chemical Storage

Case History - Sodium Hypochlorite Tank Farm

- Bis-A Epoxy vinyl ester resin
- Ambient temperature

Case History – Sodium Hypochlorite Storage Tank

 Brominated epoxy vinyl ester resin

Ambient temperature

 Municipal wastewater treatment facility

Case History – 15% Sodium Hypochlorite Storage Tank

- Brominated epoxy vinyl ester resin
- 5000 gallon tank at ambient temperature
- Installed in 2008 at Buffalo Sewer Authority Bird Island wastewater treatment plant
- Corrosion liner
 - One layer each C-glass veil and Nexus veil
 - 120 mil (3.0 mm) thick
 - BPO/DMA cure system
 - MEKP/cobalt cure system for structural layers
 - Post cure

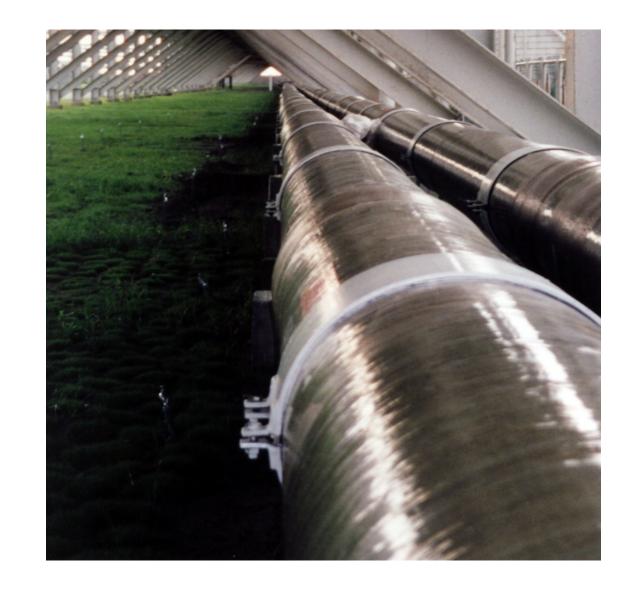
Case History - 0.8% Sodium Hypochlorite Storage Tank

- On-site NaOCl generation Smyrna, TN
- pH = 9.5, ambient temperature
- Brominated EVER, BPO/DMA cure system
- Excellent condition after 5 years service

Case History – 50% Sodium Hydroxide Storage Tank

- Bis-A epoxy vinyl ester resin
- Ambient temperature
- Corrosion liner
 - Two layers synthetic veil
 - 120 mils (3.0 mm) thick
- Installed 1993 at a SOLENIS facility in Houston, TX
- Still in service after 25 years with no maintenance required

Case History – Piping System



- NSF/ANSI 61 certified Bis-A epoxy vinyl ester resin
- Installed at a California desalination plant

Case History – Brine Piping

- Bis-A epoxy vinyl ester resin
- 22" diameter x 6 miles
- Service temp. = 140 -160°F (60 70°C)

Case History – 25% Ferric Chloride Storage Tank

- Bis-A epoxy vinyl ester resin
- Ambient temperature
- Installed in 1967
- Tank in good condition in 1996 when removed due to process change

Case History – Ferric Chloride Storage Tank

- Bis-A poxy vinyl ester resin
- Ambient temperature
- 100 mil corrosion liner

Supplemental Information – Case Histories, Odor Abatement

Case History – Scrubber System

- Brominated epoxy vinyl ester resin
- Scrubber system installed at the Allegheny County Sanitary Authority in PA

Case History – Odor Control System

- Brominated epoxy vinyl ester resin
- Installed at the North Central Outfall Sewer Air Treatment Facility in Los Angeles, CA

Case History – Odor Control System

- Brominated epoxy vinyl ester resin
- Biological odor control filtering system
- Installed in 2016 at a water reclamation plant in Lubbock, TX
- Treats hydrogen sulfide and other organic compounds released during wastewater treatment process
- Ambient temperature
- 100 mil corrosion liner

Case History – Odor Control Duct

- Bis-A epoxy vinyl ester resin
- Ambient temperature
- 100 mil corrosion liner