American Composites Manufacturers Association

Market Pull for Recycled Composites Products

Ed Pilpel

Sustainable Composites

Options for Marketing-Recycling Composite Bi-Product Streams

- Repurpose an existing composite product or Bi-Product Stream for an alternate use. Spare parts Automotive and Aerospace, Bird House, Light Fixture
- Conversion of an End of Service Life product to a next generation material. Filler material incorporated into new composite products, Cement Kiln conversion of composite material to energy and incorporation of the glass fiber as a component.
- Energy Conversion and Harvest high strength and high stiffness fibers . Polymer as a synthetic fuel. Harvested fibers and bi-products for Automotive, Consumer Products Aerospace.
- Reclaim by a reverse chemical or combination of processes to return a composite back to its fiber, monomer and additive constituents. Harvest and condition the fibers. Repurpose as monomers and bi-products or components for new polymers.
- Market/sales case for a product that is branded with recycled content, at a cost premium. Sporting Goods, Consumer Products.
- Market to customer companies that are committed to sustainability and recycling.

Supply Chain Elements to Support End Markets

- A consistent, reliable, cost effective source of End of Service Life composites and manufacturing Bi-Product streams to meet demand.
- Universal Standards that supports and determines original composite properties, recycled material properties and overall performance.
- A Universal LCA/LCI modeling tool for comparative analysis of all key variables (e.g. environmental impact, embedded energy, cost analysis).
- Supply Chain supported by standards to provide recycled material credibility, consistency and quality assurance certification.
- Infrastructure for the Supply Chain that supports manufacturing processing, logistics, transportation and available inventory.
- Alternative to simplify the overall Supply Chain via a single source that internally handles the supply chain from End of Service Life Gate to providing a raw material or manufacture of a next generation product.

THANK YOU

QUESTIONS

ed@sustcomp.com

American Composites Manufacturers Association

Composite Recycling Program

Chuck Ludwig
CHZ Technologies

Bloomberg: Wind Turbine Blades can't be Recycled 2-5-2020

Part 1: ACMA-IACMI-DOE Composite Program

CHZ Phase 2-GE Wind Blade Fiber Recovery

Modified Reactor

- Samples fibers and shreds sent to Ryan Ginder.
- Fibers testing in process

Process sweet spot for GF in the blades

Composites Recycling Conference 2020 | Online RECOVER. TRANSFORM. INNOVATE.

Next Step Objectives:

- Industry Goal \rightarrow find best fit applications
- CHZ Goal \rightarrow find process partners

Role in the Green/Circular Economy

- Partnering w/ Major association \& markets needing EOL
- EPRI Impact poles \& wind blades
- Non-recyclable Plastics (Ocean) + Electronic scrap + Vinyl Institute (PVC) + Polyurethane + EPS (packaging) + others
- CERMR $\rightarrow 501$ (c) (3) Non Profit
- Renewable SynGas \rightarrow Energy, Liquid fuels, Building blocks, Green H_{2}, others
- Youngstown Thermal Plant + R\&D Center-Ohio based
- ORNL Processing facility

IACMI-ACMA-DOE has opened the pathways
Jobs, investment, scalability and legacy

CHZ Technologies

Thanks \& Questions

American Composites Manufacturers Association

Opportunities for Recycled Fibers in Thermoplastic Composites

David Salem
CNAM Center
South Dakota School of Mines and Technology
Panel: Market Pull for Recycled Composite Products

Market Pull for Recycled Composite Products

Opportunities for Recycled Fibers in Thermoplastic Composites

- High cost of composites remains a significant impediment to their wider use in industrial and consumer applications
- One way to reduce composites cost is the utilization of recycled fibers
- To gain value from low fiber cost, the manufacturing cost must also be low - able to produce parts at high volume and short cycle times
- Thermoplastic composites offer high volume, low cost production processes, which can take advantage of low-cost carbon fibers, and can make economic sense for recycling of glass fibers

Suitable processes for low cost incorporation of recycled fibers in composite parts

Injection Molding

- Fast, high volume, low cost
- Limitation on part size and on directional control of mechanical properties

Molding of Fiber-Reinforced Thermoplastic Sheet

 (CNAM's DiFTS process)DiFTS laminate properties

DifTS	Tensile		Flexure	
	Strength (MPa)	Modulus (GPa)	Strength (MPa)	Modulus (GPa)
PA6 / 30wt\% RECYCLED, standard modulus $1 / 4 "$ " carbon fiber from VARTEGA	212	23	342	22
PA6 / 30wt\% VIRGIN, standard modulus, chopped 1/4" carbon fiber from SGL (thermoplastic sizing)	249	24	377	24
PA6 / 30wt\% RECYCLED, $1 / 4 "$ intermediate modulus carbon fiber from Barnet	283	30	438	27

- Fast throughput, high volume sheet-forming process
- Discontinuous fibers have controlled orientation
- Lamination of sheets to any width and thickness
- Layup (with/without continuous-fiber thermoplastic tapes/sheets) can be engineered to meet specific cost/property requirements

DiFTS sheets and tapes

- Can use as composite skins with lightweight moldable core
- Well-suited to low-cost vacuum thermoforming or pressure forming, with rapid cycle times
- Well-suited to compression molding for higher value products

3D Printing

- Thermoplastic filaments containing recycled fibers for fused deposition 3d printing

Market drivers and applications

Market Drivers

- Low cost composites for semi-structural and structural parts
- Property/cost design flexibility
- Meet corporate sustainability goals and reduce costs
- End-of-life product in, new products out, potentially in a single facility
- Multiple life products

Application Examples

- Light weight vehicles: Reduction of components, production steps, screws, bolts, seams: strong opportunities in EVs and self-driving vehicles
- Construction and furniture - shape flexibility for greater design freedom and light weight
- Consumer electronics: parts and casings
- Agricultural equipment sustainability
- Musical instruments
- Sports equipment
- Overmolding substrates
- Composites that can be fused with 3D printed parts

Demonstration in a John Deere Part

(ACMA-IACMI Recycling Group Project, Phase 2)

Commercial Motivation

Recover fibers from an end-of-life John Deere product (e.g. an agricultural spray boom containing glass and carbon fibers in a thermoset resin) and re-use them in a John Deere thermoplastic composite part (e.g. agricultural vehicle component)

Materials

Polymer: HMWPE regrind (recycled), used in many John Deere parts Fibers: (1) Barnett recycled carbon fibers, (2) Thermolyzer-recovered glass fibers, (3) Mixture of Thermolyzer-recovered glass fibers and Thermolyzer-recovered carbon fibers.

Process

- Thermolyzer fibers were cyclone-cleaned at SD Mines and some were densified by Vartega to permit feeding to extruder
- SD Mines produced fiber-reinforced sheet using its DiFTS technology
- Reinforced sheets were laminated into ~6mm thick, 4’ x 4’ panels
- Panels were vacuum thermoformed by a John Deere contractor into
 a door panel part

American Composites Manufacturers Association

Enabling the Circular Economy

"Develop Value Added Recycled Feedstocks for Additive and Composite Manufacturing"

Soydan Ozcan- Senior R\&D Scientist
Thrust lead: Composite Recycling
: Bio-Derived Materials \& Additive Manufacturing
Oak Ridge National Laboratory

2020 CCOMPOSITE RECYCLING
CONFERENCE 2020 - ONLINE
ACMA
May 19-20, 2020

Waste Stream for Composite and Additive Manufacturing

Waste Stream	Recovered Commodities		Value-added Recycled Products
Example Thermosets - Wind Turbine Blades - Aerospace Components - Automotive Paneling - Marine - Construction Industry - Sheet Molding Compound - Bicycle Industry - High End Sports Equipment (e.g. CF Kayak paddles)	Thermoset Composites	Energy \& Chemicals Reclaimed Valuables, e.g. fibers, carbon black	- Additively manufactured parts and industrial molds (e.g., precast concrete for construction) - Compression and/or injection molded components for vehicle lightweighting (e.g., automotive
Example Thermoplastics - Bottles - Packaging Materials - End of Life AM parts - Automotive Trim - Elastomers (Rubber) - Water Sports Equipment	Thermoplastic	High Value Plastics for AM Low value plastics for composite upcycling	- Composite extrusion for infrastructure components (e.g., composite decking)

[^0]\checkmark Repurpose high value plastics as AM and composites feedstock
\checkmark Reclaim high value products e.g., high performance fibers etc.
\checkmark Upcycle low value plastics
\checkmark Recovering energy from non-reusables

Proposed Signature Projects

Recycling- Rapid Innovation and Commercialization Lab Floor Plan
Open research facility with the combined capabilities

Composites Recycling Conference 2020 RECOVER. TRANSFORM. INNOVATE

Circular economy supporting capabilities:

- Green boxes are new equipment
- Other colors are MDF existing capabilities

Current Pilot Scale Capabilities

Demonstrate the Process Scalability

Thermoplastics

- Big Area AM

- Injection Molding

- Compression Molding

- Prepreg Molding

Pilot Scale Recycling Capabilities

Fiber Reclamation

- Pyrolysis of resin for reclaiming of fiber - controlled atmosphere, mesh belt furnace

Cutting/Shredding/Granulation

- Physical breakdown of plastics for either immediate use or further processing

Compounder - Pelletizer

- Melt mixing to create new feedstock (pellets)
- Processing of material into immediately usable feedstock (pellets)

Future Capabilities

Pyrolysis/Gasification

- Thermal breakdown to recover oils, syngas, fibers, and energy

Fischer-Tropsch process

- Further conversion of oils into higher grade fuels and lubricants

Sorting

- Separation of different plastics for further processing

Example R\&D Projects - Plastic \& Composite Recycling

--There are many avenues for circular composites--

Closing the loop of recycled carbon fiber, converting to automotive panel

©vartega

Application: Printed Utility Pole

Material used:
Recycled
Polycarbonate reinforced with bamboo

Source:
Reclaimed
Polycarbonate waste

Process: Big Area Additive Manufacturing

IACMI Outreach and Dissemination of Knowledge

- IACMI Composite Recycling and Remanufacturing Roadmapping Workshop, 2016
- Participate conference panels, support various CAMX, SAMPE, ACMA Sustainability Coalition 2017-2019
- 8 IACMI Recycling Projects with total of 30 industrial collaborators
- Published journal papers
- Selected for cover page of "Recycling" journal for June 2019

Thank you!

[^0]: Composites Recycling Conference 2020 | Online RECOVER. TRANSFORM. INNOVATE.

