

RECOVER. TRANSFORM. INNOVATE.

Composites Recycling Conference 2020 | Online

May 19 - 21, 2020

Enter Topic Here

Market Pull for Recycled Composites Products

Ed Pilpel Sustainable Composites

Options for Marketing-Recycling Composite Bi-Product Streams

- **Repurpose an existing composite product or Bi-Product Stream for an alternate use**. *Spare parts Automotive and Aerospace, Bird House, Light Fixture*
- **Conversion of an End of Service Life product to a next generation material.** *Filler material incorporated into new composite products, Cement Kiln conversion of composite material to energy and incorporation of the glass fiber as a component.*
- Energy Conversion and Harvest high strength and high stiffness fibers . Polymer as a synthetic fuel. Harvested fibers and bi-products for Automotive, Consumer Products Aerospace.
- Reclaim by a reverse chemical or combination of processes to return a composite back to its fiber, monomer and additive constituents. Harvest and condition the fibers. Repurpose as monomers and bi-products or components for new polymers.
- Market/sales case for a product that is branded with recycled content, at a cost premium. Sporting Goods, Consumer Products.
- Market to customer companies that are committed to sustainability and recycling.

Supply Chain Elements to Support End Markets

- A consistent, reliable, cost effective source of End of Service Life composites and manufacturing Bi-Product streams to meet demand.
- Universal Standards that supports and determines original composite properties, recycled material properties and overall performance.
- A Universal LCA/LCI modeling tool for comparative analysis of all key variables (e.g. environmental impact, embedded energy, cost analysis).
- **Supply Chain supported by standards** to provide recycled material credibility, consistency and quality assurance certification.
- Infrastructure for the Supply Chain that supports manufacturing processing, logistics, transportation and available inventory .
- Alternative to simplify the overall Supply Chain via a single source that internally handles the supply chain from End of Service Life Gate to providing a raw material or manufacture of a next generation product.

THANK YOU

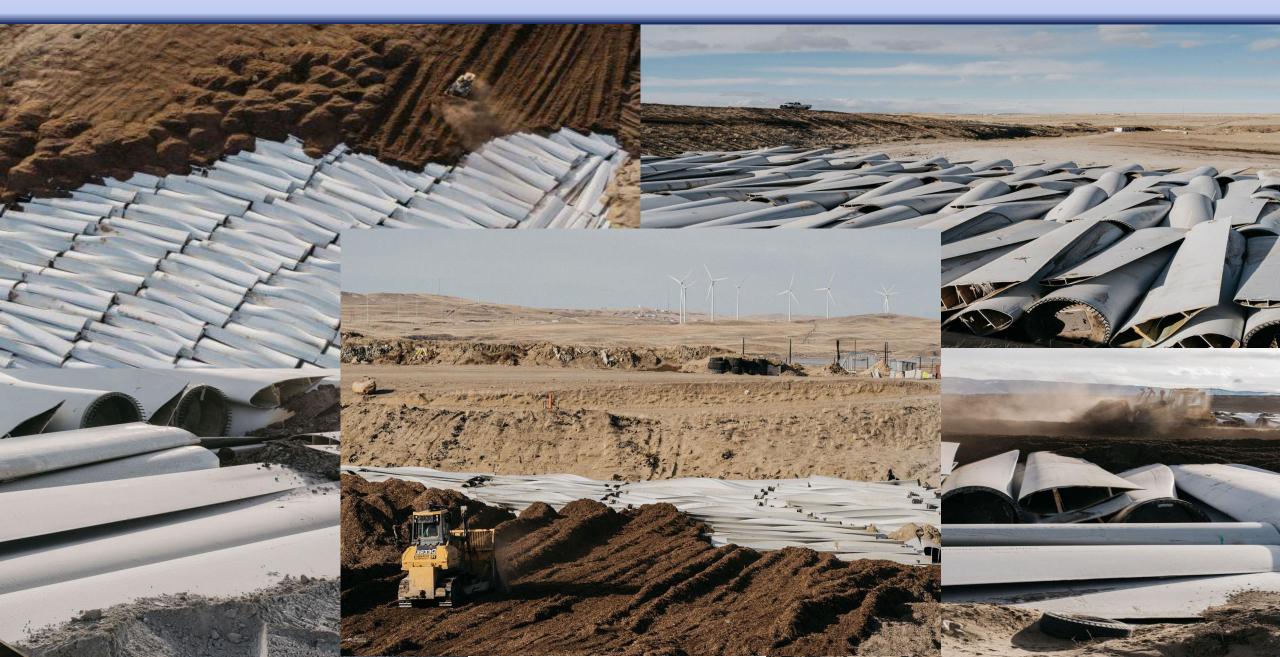
QUESTIONS ed@sustcomp.com

Composites Recycling Conference 2020 | Online RECOVER. TRANSFORM. INNOVATE.

RECOVER. TRANSFORM. INNOVATE.

Composites Recycling Conference 2020 | Online

May 19 - 21, 2020


Composite Recycling Program

Chuck Ludwig CHZ Technologies

Bloomberg: Wind Turbine Blades can't be Recycled 2-5-2020

Part 1: ACMA-IACMI-DOE Composite Program

Composites Recycling Conference 2020 | Online RECOVER. TRANSFORM. INNOVATE.

Sustainable Re-use

CHZ Phase 2—GE Wind Blade Fiber Recovery

- Reactor modification complete & cleaned
- Phase A → confirm process conditions for best recovered fibers.
- <u>Phase B</u>→ process balance of shreds. <u>120 lbs. of fibers</u>
 - Process temp 400-450°C
 - Process "<u>sweet spot</u>" for composites
- Samples fibers and shreds sent to Ryan Ginder.
- Fibers testing in process

Process sweet spot for GF in the blades

Next Step Objectives:

Industry Goal→ find best fit applications CHZ Goal→ find process partners

Role in the Green/Circular Economy

- Partnering w/ Major association & markets needing EOL
 - EPRI Impact poles & wind blades
 - Non-recyclable Plastics (Ocean) + Electronic scrap + Vinyl Institute (PVC) + Polyurethane + EPS (packaging) + others
- CERMR→ 501 (c) (3) Non Profit
- Renewable SynGas → Energy, Liquid fuels, Building blocks, Green H₂, others
- Youngstown Thermal Plant + R&D Center-Ohio based
- ORNL Processing facility

IACMI-ACMA-DOE has opened the pathways
Jobs, investment, scalability and legacy

CHZ Technologies

Thanks & Questions

Composites Recycling Conference 2020 | Online RECOVER. TRANSFORM. INNOVATE.

RECOVER. TRANSFORM. INNOVATE.

Composites Recycling Conference 2020 | Online

May 19 - 21, 2020

Opportunities for Recycled Fibers in Thermoplastic Composites

David Salem CNAM Center South Dakota School of Mines and Technology Panel: Market Pull for Recycled Composite Products

Composites Recycling Conference 2020 | Online RECOVER. TRANSFORM. INNOVATE.

PRESENTED BY

Opportunities for Recycled Fibers in Thermoplastic Composites

- High cost of composites remains a significant impediment to their wider use in industrial and consumer applications
- One way to reduce composites cost is the utilization of recycled fibers
- To gain value from low fiber cost, the manufacturing cost must also be low able to produce parts at high volume and short cycle times
- Thermoplastic composites offer high volume, low cost production processes, which can take advantage of low-cost carbon fibers, and can make economic sense for recycling of glass fibers

Suitable processes for low cost incorporation of recycled fibers in composite parts

Injection Molding

- Fast, high volume, low cost
- Limitation on part size and on directional control of mechanical properties

Molding of Fiber-Reinforced Thermoplastic Sheet (CNAM's **DiFTS** process)

- Fast throughput, high volume sheet-forming process
- Discontinuous fibers have controlled orientation
- Lamination of sheets to any width and thickness
- Layup (with/without continuous-fiber thermoplastic tapes/sheets) can be engineered to meet specific cost/property requirements
- Can use as composite skins with lightweight moldable core
- Well-suited to low-cost vacuum thermoforming or pressure forming, with rapid cycle times
- Well-suited to compression molding for higher value products

3D Printing

 Thermoplastic filaments containing recycled fibers for fused deposition 3d printing

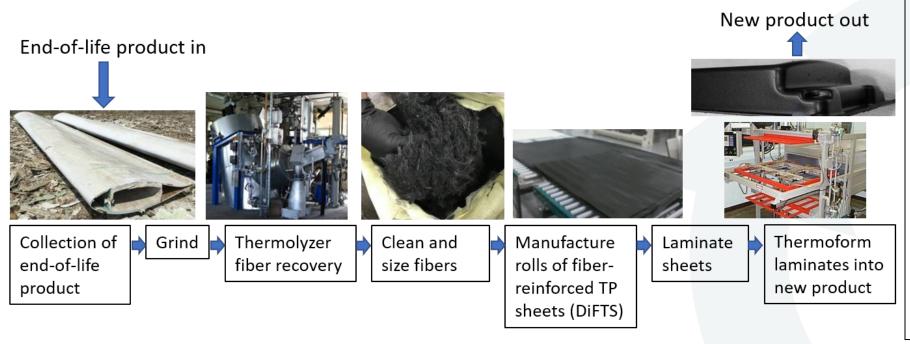
Composites Recycling Conference 2020 | Online RECOVER. TRANSFORM. INNOVATE.

DiFTS laminate properties

DIFTS	Tensile		Flexure	
DIFIS	Strength (MPa)	Modulus (GPa)	Strength (MPa)	Modulus (GPa)
PA6 / 30wt% RECYCLED, standard modulus ¼" carbon fiber	212	23	342	22
from VARTEGA	212	23	542	22
PA6 / 30wt% VIRGIN, standard modulus, chopped ¼" carbon	249	24	377	24
fiber from SGL (thermoplastic sizing)	249	24	5//	24
PA6 / 30wt% RECYCLED, ¼" <u>intermediate modulus</u> carbon	283	30	438	27
fiber from Barnet	205	50	430	27

DiFTS sheets and tapes

DiFTS molded products



Market drivers and applications

Market Drivers

- Low cost composites for semi-structural and structural parts
- Property/cost design flexibility
- Meet corporate sustainability goals <u>and</u> reduce costs
- End-of-life product in, new products out, potentially in a single facility
- Multiple life products

Application Examples

- Light weight vehicles: Reduction of components, production steps, screws, bolts, seams: strong opportunities in EVs and self-driving vehicles
- Construction and furniture

 shape flexibility for greater design freedom and light weight
- Consumer electronics: parts and casings
- Agricultural equipment sustainability
- Musical instruments
- Sports equipment
- Overmolding substrates
- Composites that can be fused with 3D printed parts

Demonstration in a John Deere Part (ACMA-IACMI Recycling Group Project, Phase 2)

Commercial Motivation

Recover fibers from an end-of-life John Deere product (e.g. an agricultural spray boom containing glass and carbon fibers in a thermoset resin) and re-use them in a John Deere thermoplastic composite part (e.g. agricultural vehicle component)

Materials

Polymer: HMWPE regrind (recycled), used in many John Deere parts **Fibers:** (1) Barnett recycled carbon fibers, (2) Thermolyzer-recovered glass fibers, (3) Mixture of Thermolyzer-recovered glass fibers and Thermolyzer-recovered carbon fibers.

Process

- Thermolyzer fibers were cyclone-cleaned at SD Mines and some were densified by Vartega to permit feeding to extruder
- SD Mines produced fiber-reinforced sheet using its DiFTS technology
- Reinforced sheets were laminated into ~6mm thick, 4' x 4' panels
- Panels were vacuum thermoformed by a John Deere contractor into a door panel part

RECOVER. TRANSFORM. INNOVATE.

Composites Recycling Conference 2020 | Online

May 19 - 21, 2020

Enabling the Circular Economy "Develop Value Added Recycled Feedstocks for Additive and Composite Manufacturing"

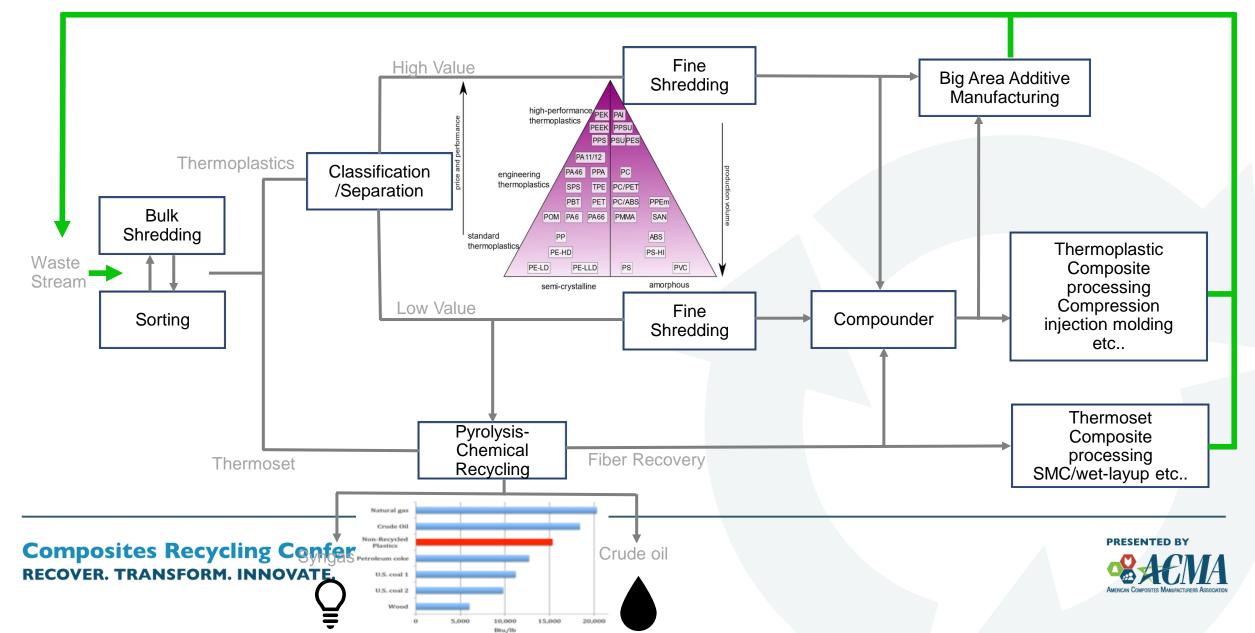
Soydan Ozcan- Senior R&D Scientist Thrust lead: Composite Recycling : Bio-Derived Materials & Additive Manufacturing Oak Ridge National Laboratory

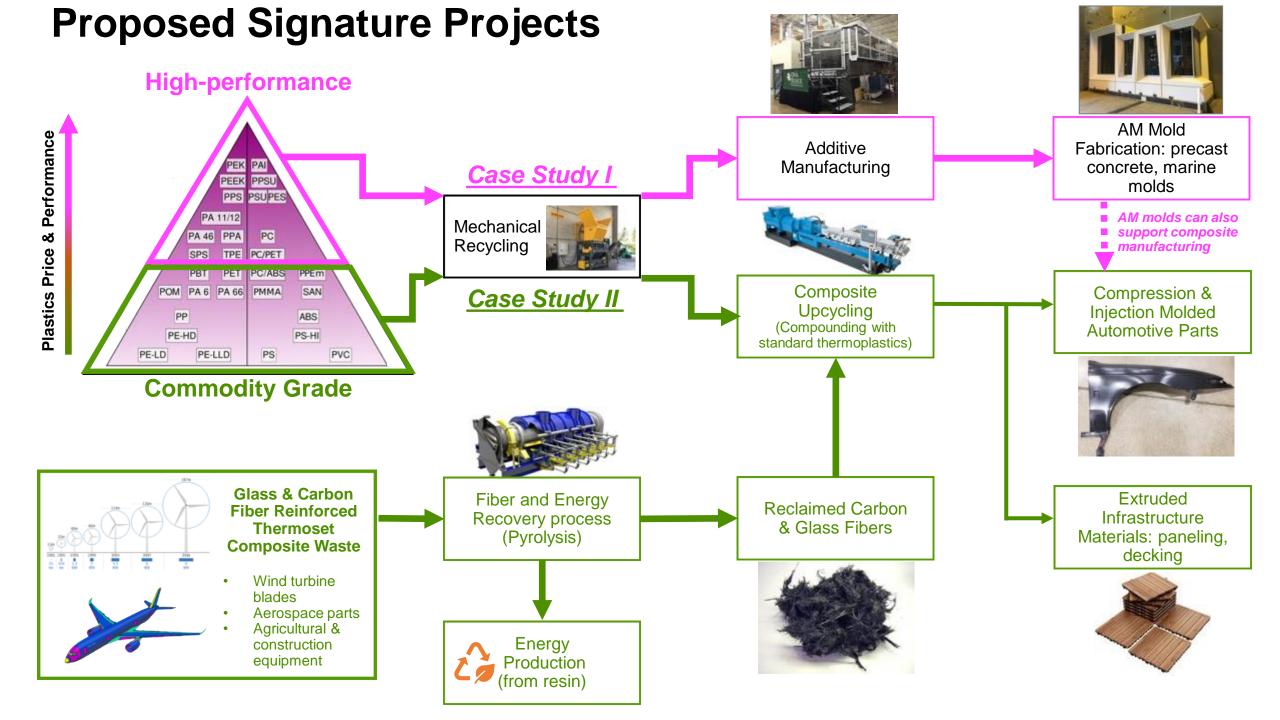
2020 CCOMPOSITE RECYCLING CONFERENCE 2020 – ONLINE ACMA May 19-20, 2020

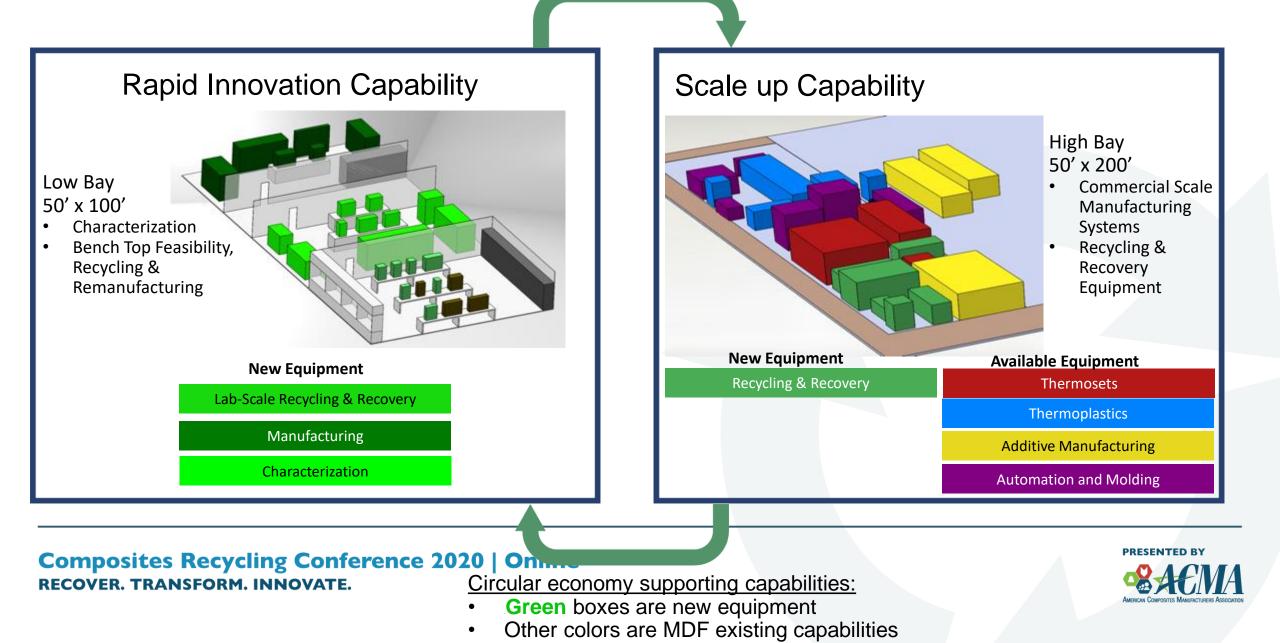
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Energy Efficiency & Renewable Energy

ADVANCED MANUFACTURING OFFICE


Waste Stream for Composite and Additive Manufacturing


Waste Stream	Recovered Commodities	Value-added Recycled Products
 Example Thermosets Wind Turbine Blades Aerospace Components Automotive Paneling Marine Construction Industry Sheet Molding Compound Bicycle Industry High End Sports Equipment (e.g. CF Kayak paddles) 	Thermoset Composites	 Additively manufactured parts and industrial molds (e.g., precast concrete for construction) Compression and/or injection molded components for vehicle lightweighting (e.g., automotive body paneling) Composite extrusion for infrastructure components (e.g., composite decking)
 Example Thermoplastics Bottles Packaging Materials End of Life AM parts Automotive Trim Elastomers (Rubber) Water Sports Equipment 	Thermoplastic High Value Plastics for AM Low value plastics for composite upcycling	
Compositos Posycling Conformes	PRESENTED BY	


Recycling Process Flow Chart

- ✓ Repurpose high value plastics as AM and composites feedstock
- ✓ Reclaim high value products e.g., high performance fibers etc.
- ✓ Upcycle low value plastics
- ✓ Recovering energy from non-reusables

Recycling- Rapid Innovation and Commercialization Lab Floor Plan Open research facility with the combined capabilities

Current Pilot Scale Capabilities

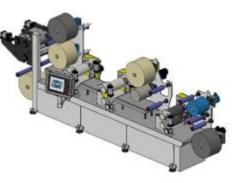
Demonstrate the Process Scalability

Thermoplastics

• Big Area AM

Injection Molding

Compression Molding



Thermosets

- Sheet Molding Compound (SMC) Line
- Thermoset Printing

- Prepreg Molding

Pilot Scale Recycling Capabilities

Fiber Reclamation

 Pyrolysis of resin for reclaiming of fiber – controlled atmosphere, mesh belt furnace

Cutting/Shredding/Granulation

 Physical breakdown of plastics for either immediate use or further processing

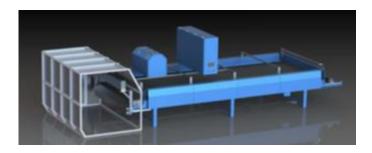
Compounder - Pelletizer

- Melt mixing to create new feedstock (pellets)
- Processing of material into immediately usable feedstock (pellets)

Future Capabilities

Pyrolysis/Gasification

• Thermal breakdown to recover oils, syngas, fibers, and energy



Fischer–Tropsch process

• Further conversion of oils into higher grade fuels and lubricants

Sorting

• Separation of different plastics for further processing

Example R&D Projects – Plastic & Composite Recycling

--There are many avenues for circular composites--

Carbon Fiber Plastic Composite Manufacturing num i munumunu

~50 million pounds of carbon fiber scrap is landfilled annually in the world

Up to 30% scrap rate

Closing the loop of recycled carbon fiber, converting to automotive panel

Vartega **ECHMER** PM AK RIDGE MANUFACTURING

National Laboratory FACILITY

Source: Reclaimed Polycarbonate waste

Process: **Big Area**

Application: Printed Utility

Material used:

Polycarbonate

reinforced with

Recycled

bamboo

Pole

Additive Manufacturing

IACMI Outreach and Dissemination of Knowledge

- IACMI Composite Recycling and Remanufacturing Roadmapping Workshop, 2016
- Participate conference panels, support various CAMX, SAMPE, ACMA Sustainability Coalition 2017-2019
- 8 IACMI Recycling Projects with total of 30 industrial collaborators
- Published journal papers
- Selected for cover page of "*Recycling*" journal for June 2019

June 2019 vol cover page

Thank you!

