Thermoplastic composite pultrusion

Dr. Anatole Gilliot

SUPREM

Thermoplastic composite pultrusion

- Suprem's expertise
- Thermoplastic vs. Thermoset
- Thermoplastic + Continuous fibre
- Challenges
- Applications
- Conclusion

Suprem's expertise

Technological SME located in Switzerland

Owned by Swiss industrial investor

30 years of experience in thermoplastic composite materials

ISO 9001:2015 and ISO 13485:2016 certified

Qualified for Aerospace, Oil & Gas and Medical application

- Flexibility & reactivity
- Investment / growth capability
- Long-term thinking

Thermoplastic vs. Thermoset

- Room temperature storable / shipment
- Clean process (no "sticky" workshop)
- Shape-able (heat, pressure, time)
 - Re-formed / Re-usable / Recyclable
- Good resistance to aggressive fluids
- Good temperature resistance
- Elevated processing temperature
- High viscosity

Thermoplastic + Continuous fibre

Challenges

- Pultrusion of fibre with thermoplastic
 - Elevated processing temperature (200-400°C)
 - High viscosity at processing temperature
 - PEEK: ~300 Pa.s (at 400°C)
 - Epoxy: ~0.1-10 Pa.s (at 20-120°C)
 - Fibre wet-out and disruption of unidirectional orientation
 - Impregnation quality
 - Fibre/matrix distribution
 - Low porosity

International Journal of Polymer Science 2014(6):1-8 M. S. Fedoseev, M. S. Grudzev, L.F. Derzhavinskaya

Challenges

- Dedicated pultrusion technology & machinery
 - Processing of high viscous thermoplastic
 - Intimate contact between fibre and polymer
 - Low porosity (< ~1%)
 - Excellent fibre-matrix distribution
 - Good fibre orientation
 - Controlled surface quality

Rod diameter: 4 mm

- Carbon / PEEK Rod
 - High tensile modulus (~160 GPa) & strength (~2700 MPa)
 - Heat resistant, Tg: 143°C
 - Resistant to large number of aggressive fluids
 - Good abrasion properties
 - Bio compatible
 - Radiolucent

Medical implants

Carbon / PEEK rod

Compression Flow Moulding (CFM) process

courtesy of icotec AG

courtesy of icotec AG

courtesy of icotec AG

Functionalized Carbon / PEEK rod

• Position of implants on X-rays pics

composite screws

- New applications
 - Raw materials combination
 - Different fibres
 - Different polymers
 - Non composite materials

Source: Aker Solutions

Conclusion

- Pultrusion with continuous fibre and high-end thermoplastics
 - Challenges managed (elevated temperature, high viscosity, good impregnation)
 - Demanding applications such as medical implants
 - Material functionalization
- Continuous, monitored and automated manufacturing process

Dr. Anatole Gilliot

agilliot@suprem.ch

www.suprem.ch