Closing the Gap in Lay-up Automation

for High-performance, Multi-material Aerostructures

Thorsten Groene, CEO & Co-Founder

Cevotec GmbH

www.cevotec.com

Agenda

Introduction to Fiber Patch Placement

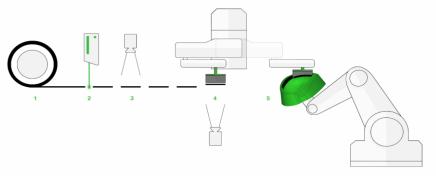
Multi-material lay-up

Load-optimized laminate design

New FPP R&D opportunities at NIAR

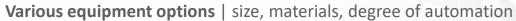
Introduction

Fiber Patch Placement (FPP) technology


Industries & applications

Focus industries Applications areas Multi-material Aerospace components Automotive Complex geometries Medical **Tailored** Additional reinforcements

The Fiber Patch Placement process


Flexible lay-up technology for high-performance composites

- 1. Feed fiber tape
- 2. Cut tape into patches
- 3. Inspect quality
- 4. Pick-up, check position
- 5. Place fiber patch

Enabling a fully automated, quality-controlled 3D lay-up for complex composites

Technology positioning: closing the gap

Fiber Patch Placement technology enables the fully automated lay-up of complex-shaped parts and is compatible with a broad variety of materials.

Automated Tape Laying

Automated Fiber Placement

Automated Fiber Patch Placement

Hand layup and other unoptimized processes

extending capabilities as technology develops

flat / simple-curved parts

complex to very complex parts

highest-complexity parts

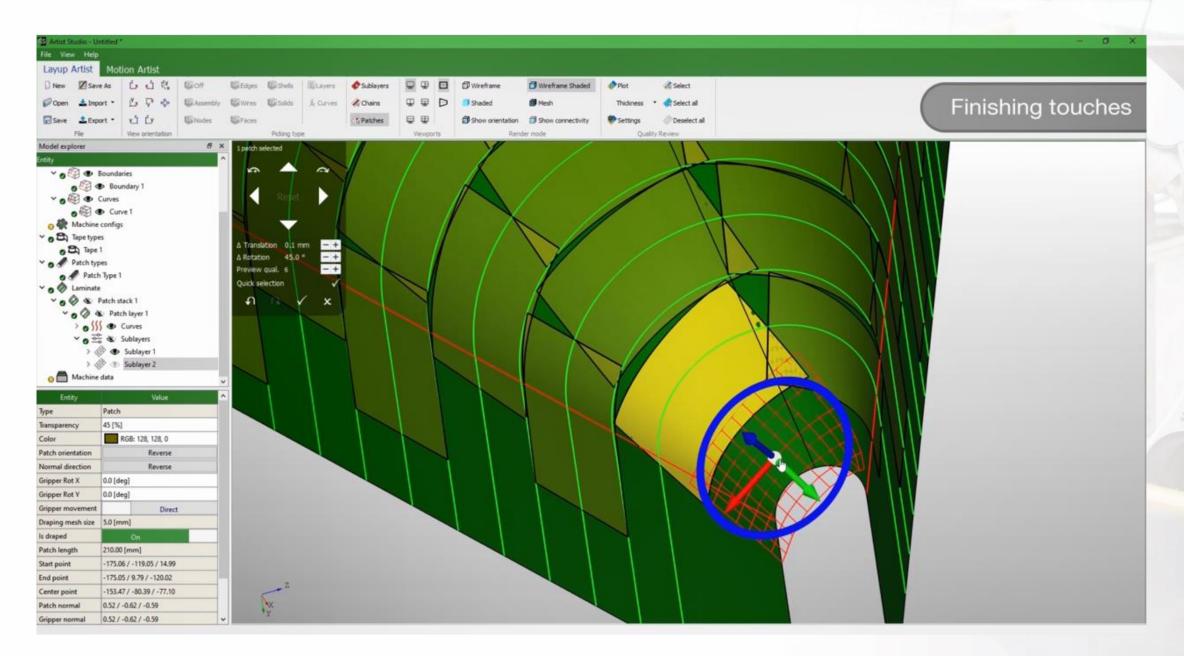
FPP technology enables automation for a new range of complex-shaped parts

Multi-material lay-up

Closing the gap in lay-up automation

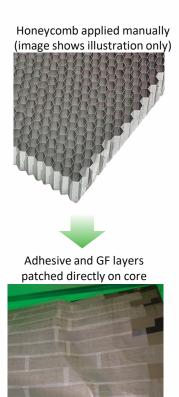
Scaling up for aerostructures (SAMBA Step L)

Largest Fiber Patch Placement system to date. Dedicated to application development of aerostructures. Patch sizes: 300 mm x 200 mm, component size: 3 m x 2 m.



- · 6-axis robot placement robot on rail
- Patch sizes up to 300 mm x 200 mm
- · Incl. rolling-motion placement feature
- Dedicated to application development of next generation aerostructures
- Tool size up to 3 m x 2 m
- Easy offline programming via digital twin
- Fully supported by Artist Studio FPP software, incl. large-ply draping algorithm

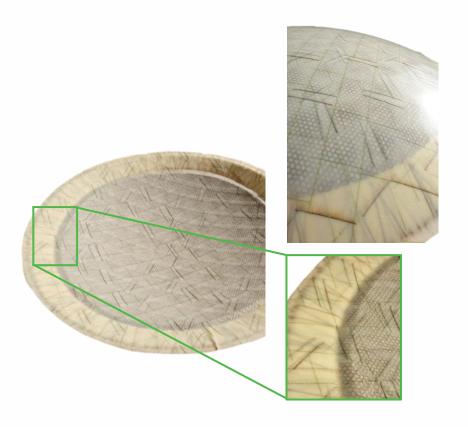
New options available to decrease the cost of next generation aerostructures



Sandwich panel trials with SAMBA Pro system

Fully automated lay-up of all fiber materials of component





FPP glass fiber sandwich structure

Automated placement of glass fiber prepreg into a concave mold

- Plies of glass fiber prepreg precisely placed directly into a concave 3D metal mold
- · Manual assembly of honeycomb sandwich core
- · Direct placement of second skin onto the sandwich core
- · Minimized void content by high compaction pressure
- · No bridging effects at chamfered transitions
- · Monolithic area placed with the same SAMBA system
- Reduced / no more intermediate debulking steps

Direct 3D placement of glass fiber material. High compaction pressure avoids debulking.

Load-optimized laminate design

Leveraging the advantages of discontinuous patch laminates

Patch laminate architecture for optimized strength

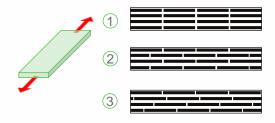
Strength of patch laminates can be optimized by fiber direction and patch overlap length

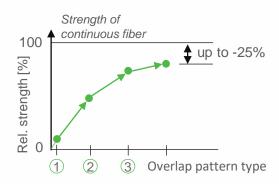
Considerations

General tensile strength:

discontinuous UD specimen (FPP)

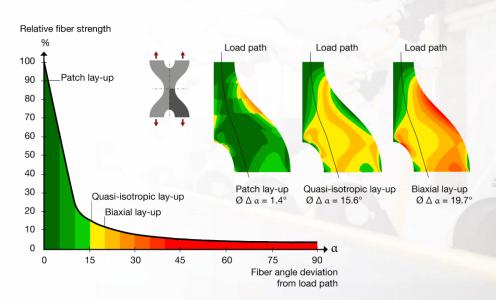
< endless fiber specimen


Degrees of FPP design freedom:


- Fiber direction
- Overlap pattern
- Layer order
- Laminate thickness

Objective:

Exploit full fiber potential (over-compensating discontinuity)


Overlap pattern

Optimized patch overlap pattern increases laminate strength.

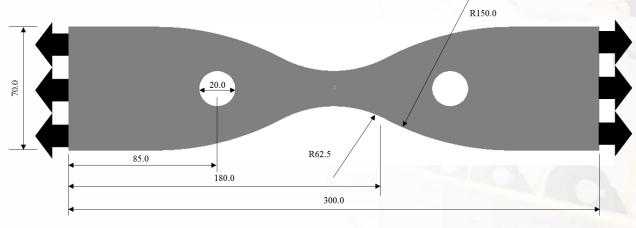
Fiber direction

Only 15° deviation between fiber and the tension-based load path leads to 82% reduced laminate strength.

Mechanical investigation of a dogbone specimen (QI vs. FPP)

Setup

Goal


Investigation on the mechanical performance of discontinuous fibers based on a dogbone shaped specimen with a curvilinear loadpath

Geometry of specimen

Dogbone specimen with open holes preventing a straight load path between both ends

Loadcase

Tensile loading

Dimensions in mm

Material

Resin: RIM135

Carbon fiber: HTS45

• QI: multiaxial non-crimp fabric (biaxial layers), lay-up [+45°,-45°,0°,90°]_s

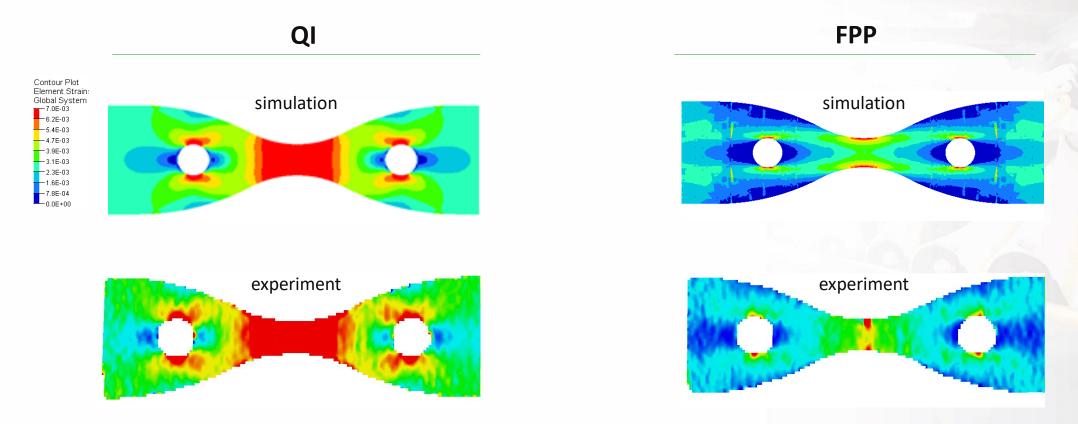
• FPP: unidirectional tape

Manufacturing and experiment

Manufactured specimen

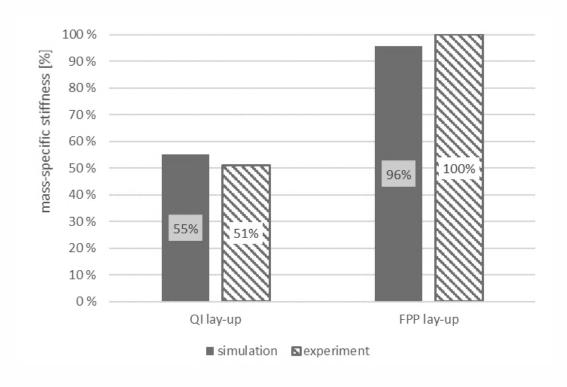
- Preforming with subsequent vacuum-assisted inpregnation process
- 5 specimen for each specimen type

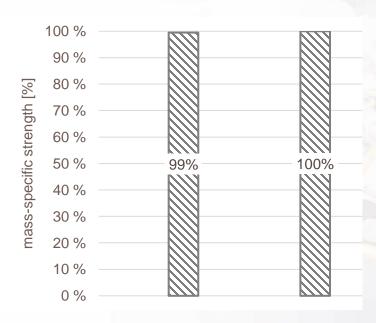
Experimental setup



- Test speed: 2 mm/min
- Use of ARAMIS digital image correlation system to measure the strain behaviour

Comparison of strain distribution for a tensile load of 20kN


More homogeneous strain distribution with FPP



Comparison of mass-specific stiffness and strength

FPP lay-up is increasing the mass-specific stiffness by a factor of 2 compared to QI lay-up. Mass-specific strength remains at the same level.

New FPP R&D opportunities at NIAR

SAMBA Pro FPP system available at NIAR's ATLAS lab in Q4 2021

NIAR's R&D capabilities to extend by FPP lay-up technology

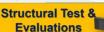
SAMBA Pro FPP system to be installed in Q4 2021. New development options for manufacturers include material testing, application / component developments, simulation & analysis based on FPP technology.

- Material testing and qualification for FPP
 - Testing for automated processability in FPP system
 - Testing of various material property specimen according to aerospace standards
- FPP-based application & component development
 - Digital laminate design & robot programming
 - Demonstrator & prototype development
 - Validation of automated production process
 - Optimizations based on testing & analysis
- Simulation, testing & analysis of FPP components
 - FE-based analysis, optimized for patch laminates
 - FPP process simulations & production run optimizations
 - Economic unit cost analysis for series production settings
 - Testing & analysis of components

Automated Manufacturing

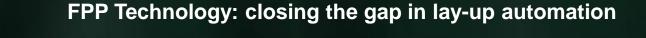
- Automated Fiber Placement
- Thermoset, Thermoplastic, Dry Fiber, and CMC
- Press Forming
- Compression-, Injection-, and Over-Molding
- Thermoplastic Welding
- Resistance, Induction, and
 Illtrasonic

High-Fidelity Inspections

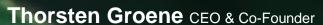

- X-Ray CT (XCT)MAUS (UT)
- Acoustic Emission (AE)
- Pulse Thermography (PT)
- Laser Shearography (LS)
- Digital Image Correlation (DIC

Computer-Aided Simulations & Analysis

- Manufacturing Simulations
- · Process Modeling
- Discrete Damage Modeling
- Stress Analysis



- · Axial-Torsion Biaxial Testing
- Durability & Damage Tolerance
- Structural Health Monitoring
- Aging Evaluations and Life
- Aging Evaluations and L Extension
- Repair Evaluation



- · New automation options with FPP, scaled up for aerospace
- ·One system multiple materials (carbon, glass, adhesives, etc.)
- · New options for designing load-optimized laminates
- ·FPP R&D opportunities at NIAR

Phone: +49 89 2314 165 51

Email: thorsten.groene@cevotec.com

John Melilli Composite Automation | Cevotec US Partner

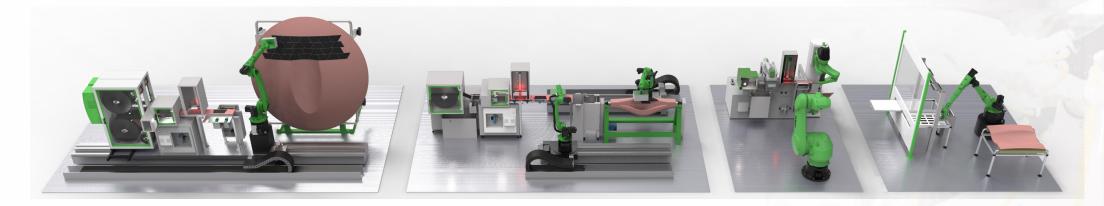
Phone: +1 856-273-7565

Email: john@compositeautomation.com

We enable manufacturers to produce complex composites in high volume and superior quality.

For a lighter, more sustainable future.

Annex


Additional slides for Q&A

SAMBA Series

Additive 3D fiber lay-up systems for multiple fiber materials. Sample configurations for different application scenarios, illustrating the flexibility and scalability of the process.

SAMBA Multi

- · Up to 4 tapes in parallel feed
- · Suitable for carbon, glass, adhesives, etc.
- · Long-reach robot for large tools
- · Ideal for multi-material aerostructures

SAMBA Scale

- · One material feed with large tape
- · High throughput rates
- · Multiple placement robots
- · Ideal for volume production

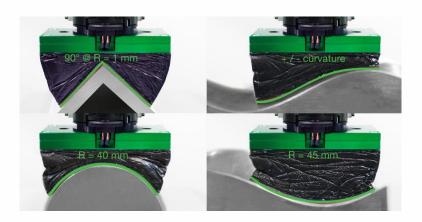
SAMBA Pro

- · Fast scara robot
- Robot-based tool manipulator
- · Ideal for batch production

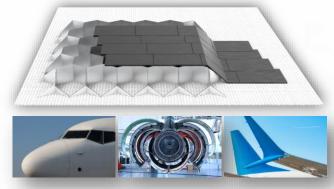
SAMBA Step

- · Tray-based material feed
- · 6-axis placement robot
- · Maximum material flexibility
- · Ideal for prototyping / R&D

All systems available in dry fiber and thermoset-prepreg configurations

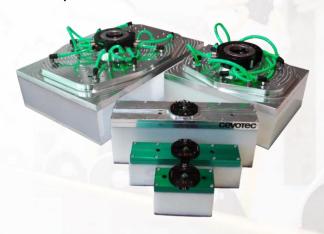


The Patch Gripper: adapting to complexity


Up to 300 mm x 400 mm. Suitable for multi-material placement. Equipped with compaction-force sensor.

Controlled fiber deposition

on concave & convex surfaces



Placement onto honeycomb cores adhesives, glass, carbon, etc.

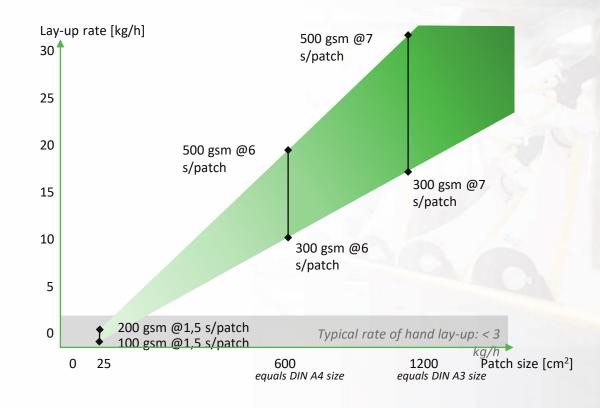
Examples of sandwich core components in aerospace

Size tailored to application up to 300 mm x 400 mm

Force-torque sensor for compaction monitoring available

Key for automated fiber placement on complex surfaces

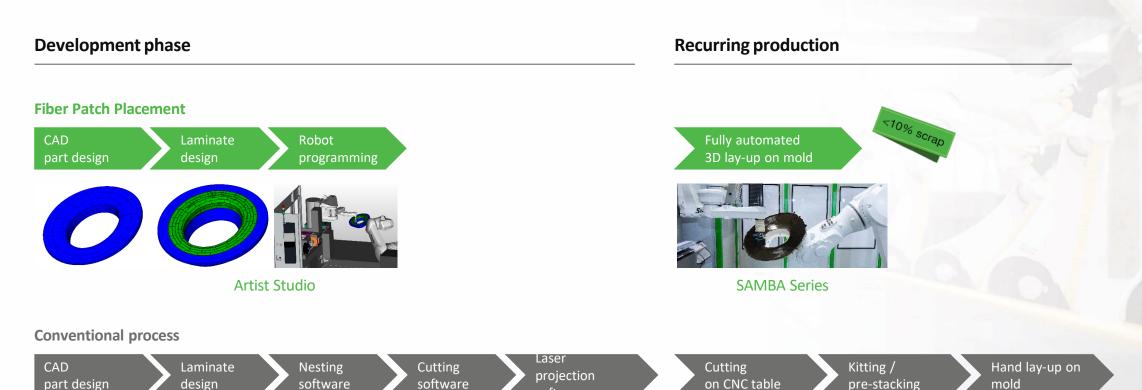
Productivity of FPP lay-up systems


Effective lay-up rates result from process parameters and can be customized to applications.

Lay-up rates of FPP systems

$$\dot{m} = \frac{patch\ length\ *patch\ width\ *areal\ weight\ *no.robots}{patch\ cycle\ time}$$

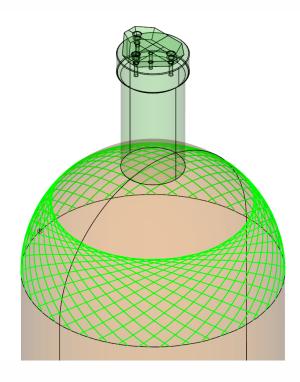
- · SAMBA FPP systems are equipped with placement robots and mold manipulators that best fit your application
- · For high throughput requirements, two or more placement robots can be fed by one feeding unit.



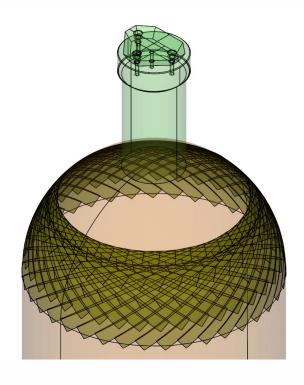
Customized to individual applications, FPP systems achieve high lay-up rates

Significantly shortened process for complex composite lay-ups

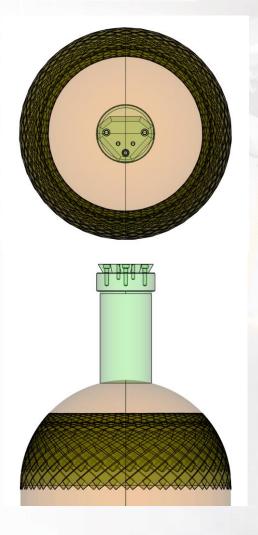
Working with standardized fiber tape cuts process time & cost – no nesting, cutting and kitting required



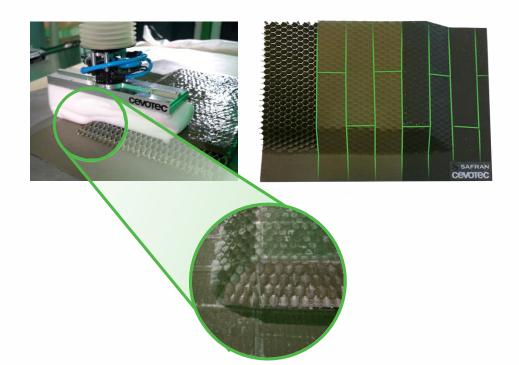
Process time & cost reductions of 20% - 60% with Fiber Patch Placement



Laminates for doylie reinforcements of pressure vessels


Laminate is created by propagating curves around liner axis according to customer specifications

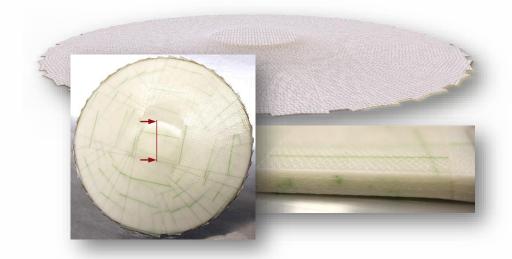
Curve propagated around liner axis


Patches created on propagated curves

Multi-material (ply) placement

Fully automated placement of various technical fiber materials, such as glass fiber prepregs, adhesive prepregs, different carbon fiber prepregs – performed with <u>a single</u> FPP system.

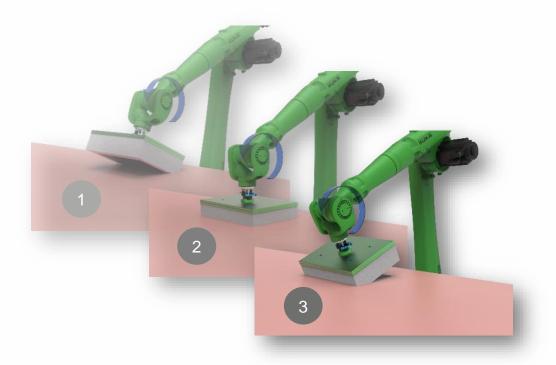
- Larger plies of different fiber prepregs are precisely placed directly onto 3D molds
- · Tested materials to date:
 - · Carbon fiber prepregs
 - · Glass fiber prepregs
 - Adhesive prepregs
- Minimized void content by high compaction pressure
- · No bridging effects at chamfered transitions
- Reduced / no more intermediate debulking steps
- · 20% 60% savings in recurring cost and cycle time


Direct 3D placement of multiple materials. High compaction pressure avoids debulking.

Controlled compaction pressure during fiber placement

Eliminating intermediate debulking steps through controlled fiber placement with FPP

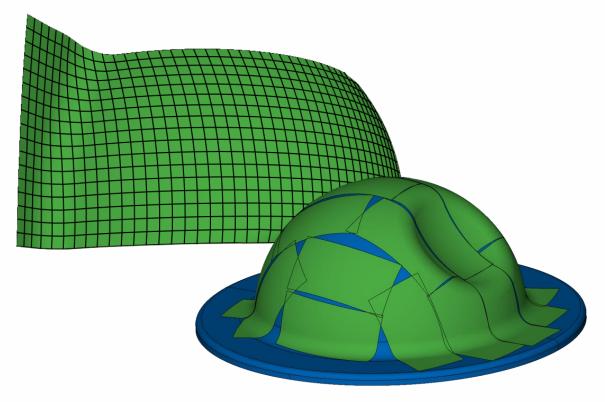
Test specimen: cevoPad


- · Glass fiber patches concentrically around a central point
- · 24 plies
- · Patch size: 45 mm x 200 mm
- · Compaction pressure during placement: 17,0 kPa
- No debulking during / after lay-up
- · Autoclave curing according to material datasheet

Test result: homogeneous sample, porosity content < 1%, also in overlap areas

Actuated robot movements to enable special placement features

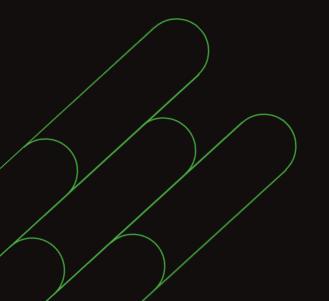
Working with a 6-axis placement robot enables the draping larger patches on curved surfaces as well as the placement with high compaction pressures to avoid air enclosures.


- Using available degrees of freedom for actuated movements of the placement robot
- · Preventing air bubbles and enclosures
- Reducing or eliminating intermediate debulking steps
- · Draping larger patches on curvatures
- Preventing disorientation of fibers or wrinkles

6-axis placement robots with special features for high-performance aerostructures

New draping algorithm for large patches and plies

To support the design of laminates with scaled patch sizes, the FPP software ARTIST STUDIO features a draping algorithm to apply larger patch precisely on curved surfaces.



- · Kinematic draping algorithm for laminates with large patches on curved surfaces
- Enables precise modeling and manipulation of gaps & overlaps of individual patches, even within one layer
- Supports placement accuracy of large-patch placement +/- 1 mm
- · Fully integrated in ARTIST STUDIO software

Scaled FPP concept supported by draping algorithm for precise modeling of large patches

Cevotec GmbH
Biberger Str. 93
82008 Unterhaching
Phone +49 89 2314 165 0
Fax +49 89 2314 165 99
info@cevotec.com
www.cevotec.com