Thermoplastic PAEK based Solutions for Aerospace and Urban Air Mobility Applications

Gilles Larroque

Global Strategic Marketing Manager - Aerospace

Victrex

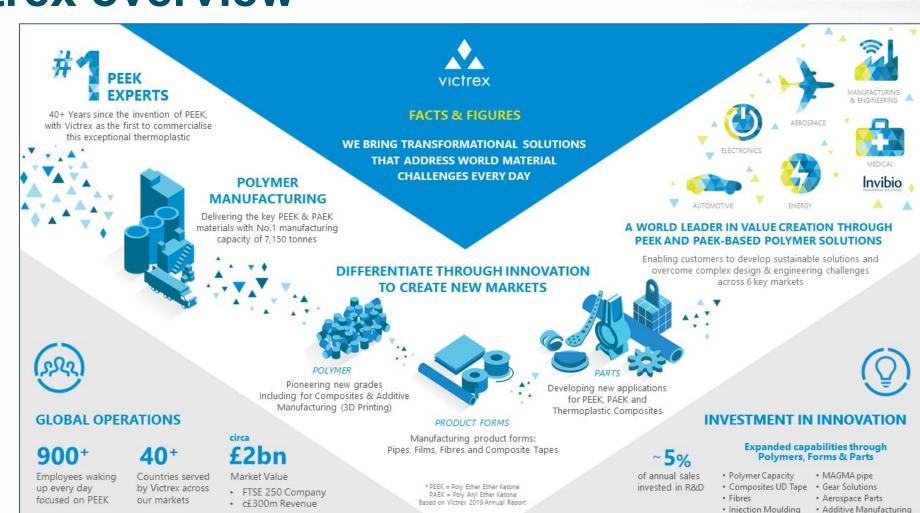
Objective / agenda

The objective of this presentation is to introduce how thermoplastic composites-based solutions can address eVTOL challenges with a focus on weight & cost reduction and mass production.

Agenda:

- Victrex introduction
- Case studies for aerospace (and automotive industries)
- VICTREX AE[™] 250 LMPAEK processing benefits
- Urban Air mobility potential applications
- Conclusion

1 – VICTREX introduction


2 - Case studies Aero and Auto

3 – VICTREX AE™250 LMPAEK processing befor Urban Air mobility potential applications

4 – Conclusion

Victrex overview

• Medical Components

1 – VICTREX introduction

2 - Case studies Aero and Auto

3 – VICTREX AE™250 LMPAEK processing by for Urban Air mobility potential applications

4 – Conclusion

Unloaded brackets – wire bundle clamps

Amphenol Pcd

PERFORMANCE OUTCOMES

One customer realized:

20% 30%

Weight Reduction v. Metal

Faster Installation vs. Metal

- Injection molded PEEK for high volume production
- Introduced on the 787 & translated to 737
- Corrosion resistance for longer life, lower maintenance
- Lightweight, ergonomic, & durable design

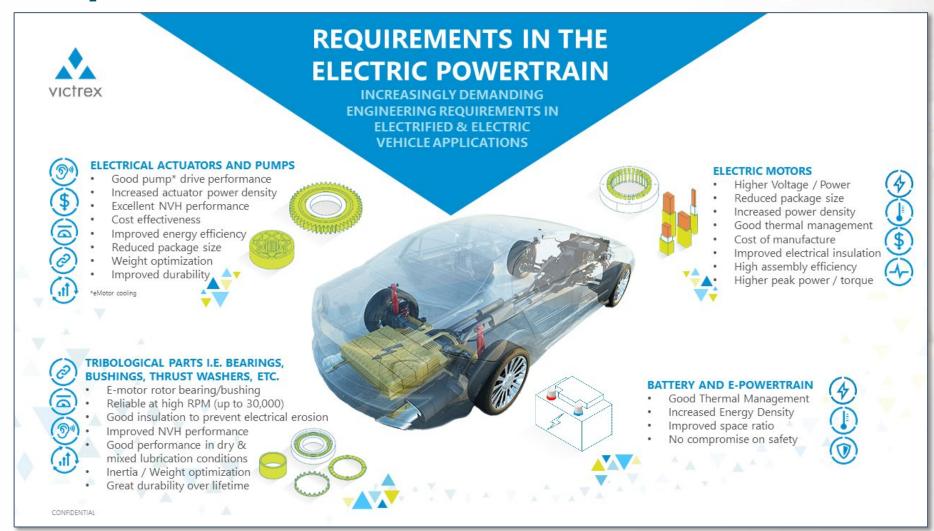
Loaded bracket – aircraft door guide

PERFORMANCE OUTCOMES

Up to

Up to 40% 40%

Weight Reduction


v. Aluminum

Cost Reduction vs. Aluminum

- Targeted metal replacement to reduce cost and weight
- First structural component to be made of PEEK
- Eliminated secondary processing step previously required to prevent corrosion

Electric powertrain

1 – VICTREX introduction

2 - Case studies Aero and Auto

3 – VICTREX AE™250 LMPAEK processing benefits for Urban Air mobility potential applications

4 – Conclusion

VICTREX AE™ 250 LMPAEK

Standard VICTREX PEEK – Semi-Crystalline Thermoplastic Polymer Typical application are injection molding, compression moulding and extrusion

- T_m= PEEK 343 °C
- $T_a = PEEK 143 °C$
- Crystallinity typically 25-30%

Victrex AE[™] 250 PAEK continuous fibre tape Lower melt PAEK resin matrix

- $T_m = 303 \, ^{\circ}C$
- $T_{c} = 147 \, ^{\circ}C$
- Crystallinity typically 25-30%

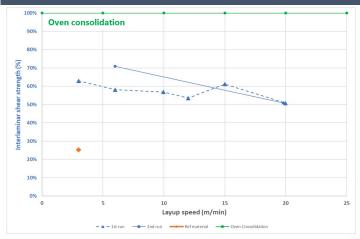
PEEK properties with a lower melting temperature"

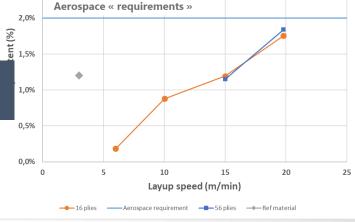
In-situ consolidation

SETTINGS

Speed (m/min)	Number of Plies	Lay up temp (°C)	Tool temp (°C)
6	16	420	165
10			
15			
20			
24			
15	56	420	165
20			

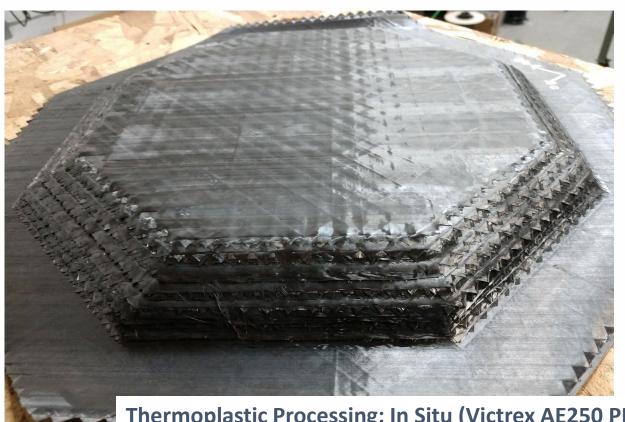
56 plies @ 20 m/min



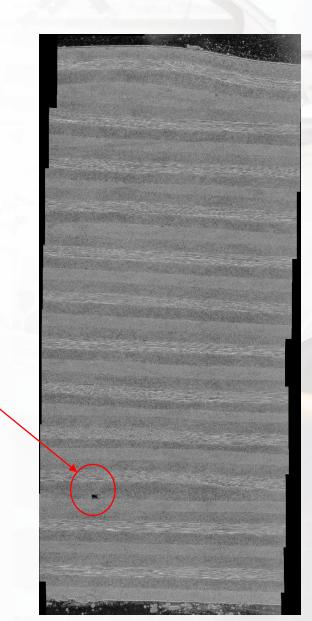

RESULTS

Crystallinity 20-25% up to 20m/min Reference material: 25-30% at 3m/min

Porosity: Less than 2% up to 20 m/min Reference material: 1,2% at 3m/min


ILSS = 70% at 6m/min - 50% at 20m/min Reference material = 25% at 3 m/min

Reference material = another PAEK UDT intended for a similar application

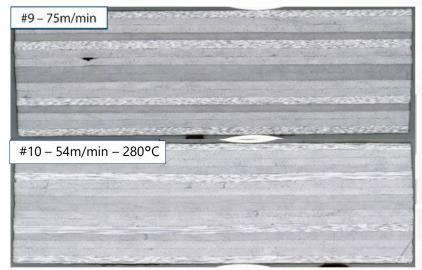

ELECTROIMPACT

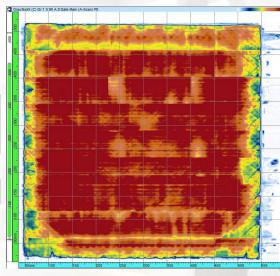
VICTREX AE™250 LMPAEK UDT

WORK WITH ELECTROIMPACT: IN-SITU

Thermoplastic Processing: In Situ (Victrex AE250 PEEK) 142P

Splice


SETTINGS


Speed Lay up temp **Tool temp** Number of Plies (°C) (m/min) (°C) **75** 350 16 RT 280 54 56 350 RT 60

RESULTS

29% crystallinity and ~0% porosity for both high speed and low temp panels

Both panel made with same number of plies

Highest speed achieved at 75m/min

Panel successfully made with a low lay up temperature at a speed of 54 m/min Good level of porosity rate (close to 0%)

Good crystallinity level (29%)

VICTREX AE™250 LMPAEK UDT

WORK WITH ELECTROIMPACT

4000 IPM (=100m/min) layup speeds achieved with VICTREX AE 250 LMPAEK with Electroimpact AFP machine

Announced January 12th, 2021 https://www.victrex.com/news/2021/01/lmpaek-afp-layup

VICTREX CONFIDENTIAL

PRESS RELEASE

Aerospace: VICTREX AE™ 250 LMPAEK UNI-DIRECTIONAL TAPE (UDT) achieving layup speeds of thermosets

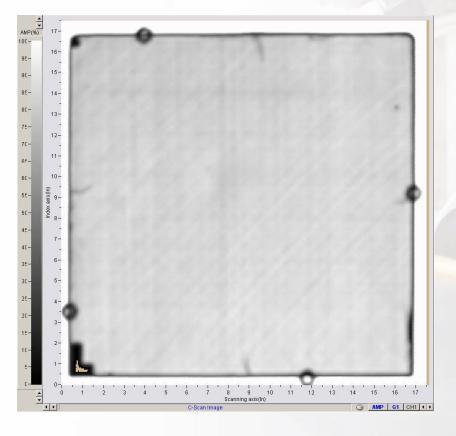
Victrex and Electroimpact achieve deposition rates of 4000 inches per minute, speeds suitable for the manufacture of large aerospace structures

Thornton Cleveleys (UK), 12 January 2021 – The next decisive step in the production of large structural components from thermoplastic composites for use in Aerospace has been achieved. Using their enhanced Automated Fibre Placement (AFP) processing technology, Electroimpact, a highly experienced provider of factory automation and tooling solutions, was able to increase laydown speeds of thermoplastic unidirectional tape (TP UDT) to 4000 inches per minute (IPM). The high-speed rates were possible by working together with Victrex, an innovative world leader in high-performance polymer solutions – and by relying on the unique properties of the company's VICTREX AF 250 LMPAEK UDT.

Currently, large composite structures in aerospace such as wings, and fuselage are virtually all thermoset based. However, the challenge with the thermoset composites is that they require a lengthy cure in an autoclave large enough for the structure. The autoclave is a production bottleneck and requires a considerable amount of energy to operate. With sustainability being an important driver for the aerospace industry, OEM's and tiers are not only looking to improve fuel efficiency of aircraft but also at improving efficiencies throughout the supply chain. The substantial benefit thermoplastic composites offer has, for some considerable time, been investigated and this has led to an increasing adoption for the manufacture of smaller parts. Moreover, thermoplastic composites can be processed Out of Autoclave (OoA) so manufacturing processes have been developed to take advantage of their potential for high-speed production. Recyclability of thermoplastic composites is another major advantage as well.

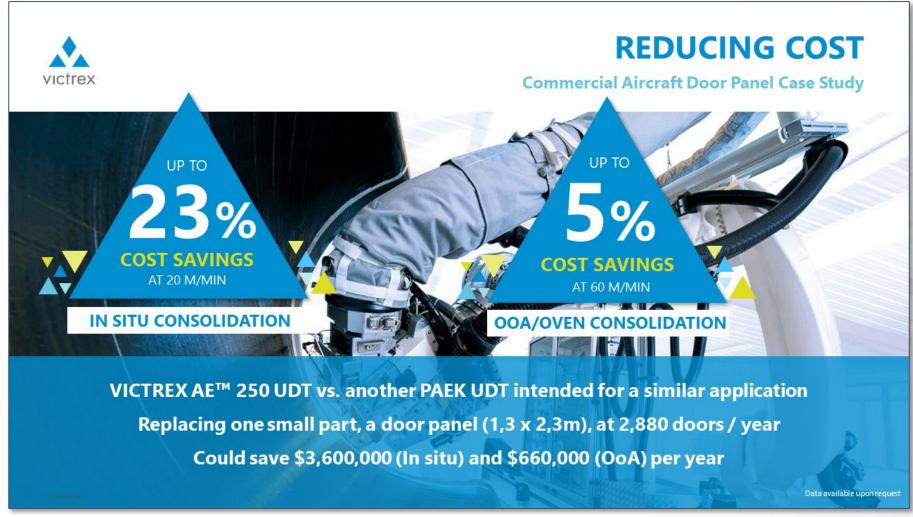
"The significance of processing thermoplastic UDT at 4000 IPM layup speeds with the Variable Spot Size (VSS) Laser is, for the first time that we know of, that thermoplastics are able to achieve thermoset lay-up speeds. These developments can help eliminate the need for autoclave cure, offer major, and new, throughout advantages for thermoplastics," explains Michael Assadi. Chief Engineer at Electroimpact.

Electroimpact have enhanced existing AFP processing technology through the deployment of a new laser heating system with the potential to revolutionize thermal processing for the aerospace industry. Assadi

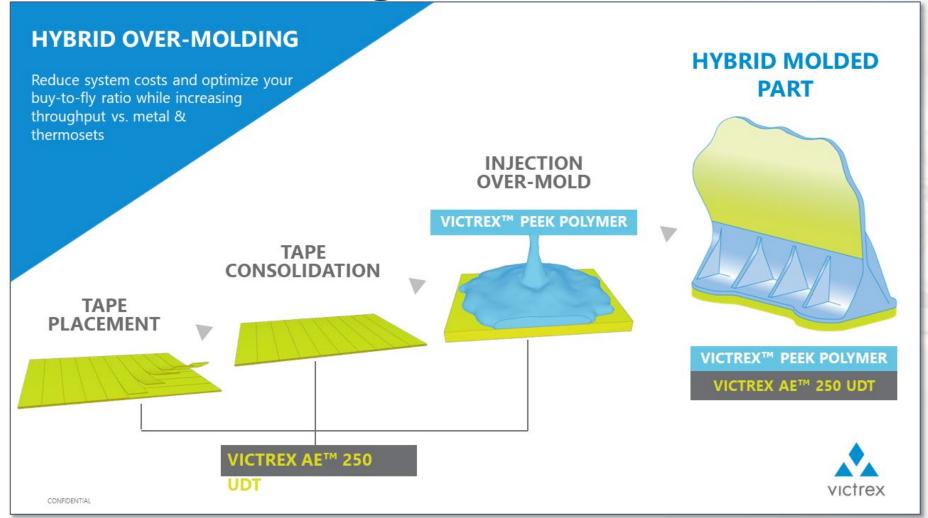

VICTREX CONFIDENTIAL

VICTREX AE™250 AFP processing

• no inclusions or porosity after press consolidation



Increasing throughput



Reducing cost

Hybrid over-molding

Case Study – Aircraft OEM

VALUE

REDUCED WEIGHT, FASTER THROUGHPUT AND LESS WASTE

VICTREX AE™ 250 OVER-MOLDING SOLUTIONS **REALIZED AIRCRAFT OEM:**

58% weight savings versus aluminum

\$ 43% cost savings versus aluminum

(\$) 6.8x better Buy-to-Fly ratio versus aluminum

VICTREX AE™250 hybrid over-molding solution helps Aircraft OEM reduce recurring costs by improving manufacturing efficiency resulting in €350,300 saved per year

Design & certification expertise

Holistic design

© TxV Aero Composites

Composite **Brackets**

Integrated

Modules

Assembly:

welding,

integrated

solutions

Pre-Equipped and

Conductor Rai as Seat Track

Stamped **Highly Loaded**

© TxV Aero Composites

Injection-Molded Loaded Brackets

Stamped Composite Loaded Brackets

Material performance e.g. Black

Aluminum

Half-Barrel Design

© Clean Sky Joint Undertaking

NIAR/NCAMP

3/10/2020 | 1 MINUTE READ

THERMOPLASTICS | MATERIALS | RESINS | FABRICS/PREFORMS | REINFORCEMENTS

NIAR's NCAMP announces release of first thermoplastic material

Toray's Cetex TC1225 is a low-melt PAEK and is part of a broad effort by the National Center for Advanced Materials Performance (NCAMP) to qualify thermoplastic materials #paek

Toray TC1225 NCAMP allowable available under:

https://www.wichita.edu/research/NIAR/Research/torray-tc1225.php

TC1225 NCAMP Process Specification

NPS 81225 Rev B February 21 2020

TC1225 NCAMP Material Base Specification

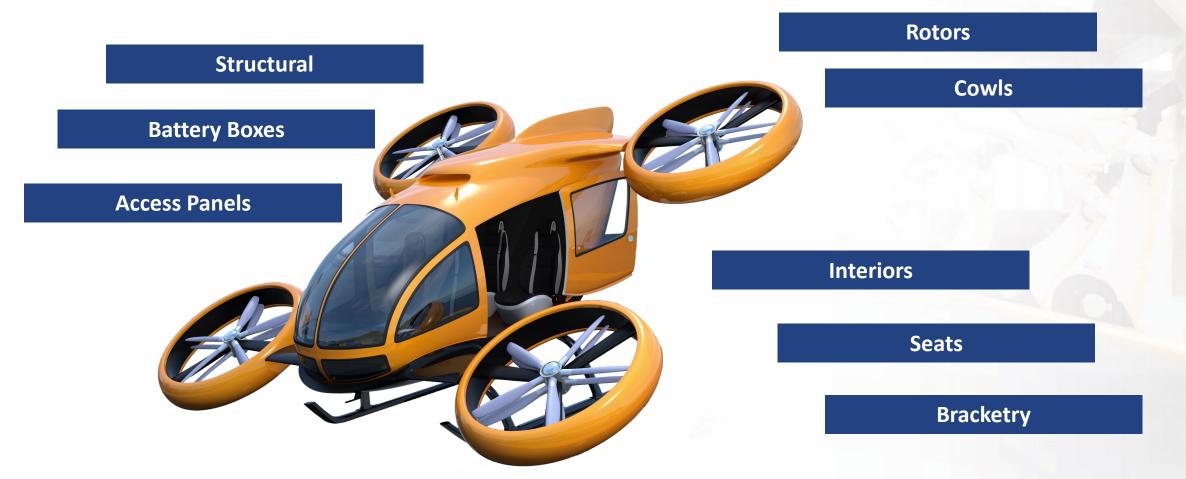
NMS 122 Base Rev C February 21 2020

T700 Unidirectional

Material Specification

NMS 122 Slash 1 Rev - February 21 2020 T700 Unitape

Material Property Data Report


CAM-RP-2019-036 Rev NC February 21 2020 MPDR

Statistical Analysis Report

NCP-RP-2019-011 Rev NC February 19 2020 SAR

Potential applications

1 – VICTREX introduction

2 - Case studies Aero and Auto

3 – VICTREX AE™250 LMPAEK processing be for Urban Air mobility potential applications

4 - Conclusion

Pre-**Production**

Thermoset vs. Thermoplastic Composites

Storage/ refrigeration

Physical limitations of autoclave vs in-situ (part size/footprint/ infrastructure)

OoA

up to

30% cost savings*

In situ

approximately

50% cost**

+ no consumable cost (bagging etc...)

+ Cost efficiencies from faster production speed

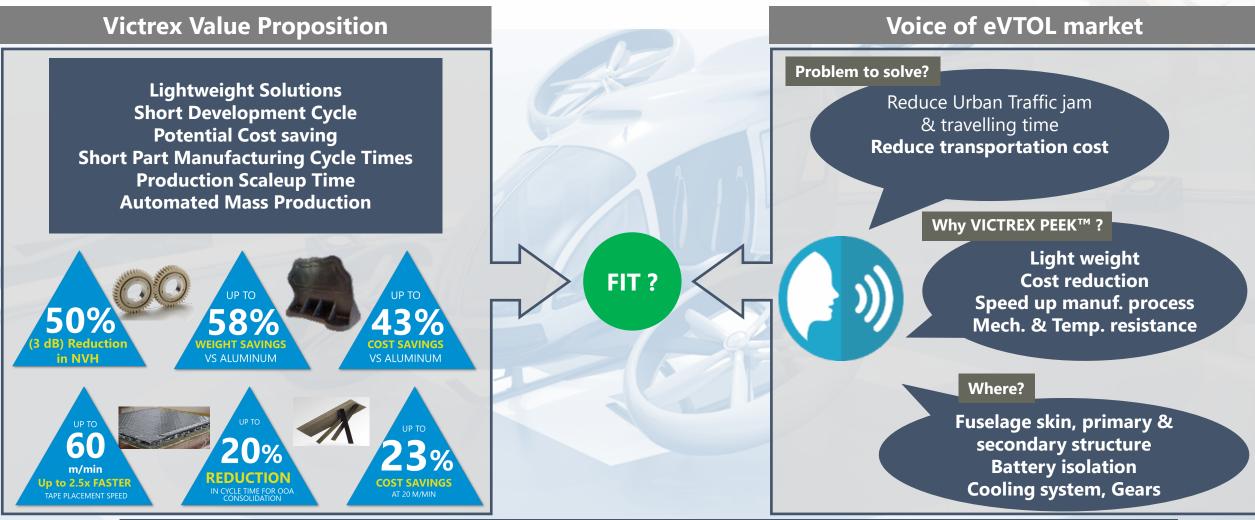
Post Production

Recyclable

+ Eco friendly

COST REDUCTION

(solvent-free working environment)


- + Enables hybrid moulding
- + Bonding (welding/fusing)

eVTOL market / Victrex

How does it resonate with you? Let's get started on your next design!

Contact information

Gilles Larroque

Victrex – Aerospace Business Unit Global Strategic Marketing Manager glarroque@victrex.com +33 (7) 86.77.34.96

DISCLAIMER

Victrex plc and/or its group companies ("Victrex plc") believes that the information contained in this document is an accurate description of the typical characteristics and/or uses of the product or products, but it is the customer's responsibility to thoroughly test the product in each specific application to determine its performance, efficacy, and safety for each end-use product, device or other application. Suggestions of uses should not be taken as inducements to infringe any particular patent. The information and data contained herein are based on information we believe reliable. Mention of a product in this document is not a guarantee of availability.

Victrex plc reserves the right to modify products, specifications and/or packaging as part of a continuous program of product development. Victrex plc makes no warranties, express or implied, including, without limitation, a warranty of fitness for a particular purpose or of intellectual property non-infringement, including, but not limited to patent non-infringement, which are expressly disclaimed, whether express or implied, in fact or by law.

Further, Victrex plc makes no warranty to your customers or agents, and has not authorized anyone to make any representation or warranty other than as provided above. Victrex plc shall in no event be liable for any general, indirect, special, consequential, punitive, incidental or similar damages, including without limitation, damages for harm to business, lost profits or lost savings, even if Victrex has been advised of the possibility of such damages regardless of the form of action.

VICTREX[™], APTIV[™], VICOTE[™], VICTREX PIPES[™], VICTREX HT[™], VICTREX ST[™], VICTREX WG[™], PEEK-ESD[™] and the Triangle (Device), are trade marks of Victrex plc or its group companies.

SHAPING FUTURE PERFORMANCETM

WWW.VICTREX.COM