Automation for the Next Generation of Aerospace Thermoplastic Composites

David Leach

Outline

- Thermoplastic Composites for Aerospace
- ATC Manufacturing background
- Thermoplastic Fabrication Processes
 - Current Status
 - Future Opportunities
- Conclusions

Thermoplastic Composites in Aerospace

Thermoplastic Composites for Aerospace

- Short fabrication cycle times
- Reduced recurring cost
- Reduced non-recurring costs
- Reduced handling costs
- Automation
- Improved performance:
 - Toughness
 - Flammability
- Recyclability

R Wilkerson Boeing R&T, ACMA Thermoplastic Composites Conference 2020

Aerospace Evolution TP Composites

Clips & Brackets

ATC Manufacturing

Toray Advanced Composites

Assemblies

Stiffeners & Channels

Structural Components

ATC Manufacturing Overview

- Founded 2004
- Manufacturing Technologies:
 - Stamp Forming
 - Continuous Compression Molding
- Approved to Aerospace Requirements
- Materials:
 - Polymers: PEEK, PEKK, LM-PAEK, PPS, PEI
 - Reinforcements: Carbon & Glass Fibers
 - Product Forms: UD Tapes and Fabrics
- Full Aerospace Inspection Capabilities
- Supply >1,100,000 parts per year
- R&D and Design Teams

- Development of Fabrication Technologies
- Modeling of Part Forming
- Member of Thermoplastic Composites Research Center (TPRC)
- Collaborative R&D Programs:
 - DARPA / Boeing: Rapid high-Performance Molding (RAPM) Program
 - NASA / U Delaware / Spirit / Joby/ Southern University: 'Composite Manufacturing Technologies for Aerospace Performance at Automotive Production Rates'

Thermoplastic Composite Part Fabrication

Thermoplastic Composite Process Flow

Material Preparation & Collation

- Prepare plies into standard orientations and widths eg 0°, +45°, -45°, 90°
- Edge Seam Welding or Tacking of Plies as needed
- Further Automation depends on:
 - Quality & consistency of materials
 - Allowance for overlaps/gaps
- Translate learning from non-aerospace materials handling

500 µm

Material Preparation & Collation – Future State

- Greater use of UD Tapes
- Goals:
 - Reduced cost
 - Greater consistency
- Approaches:
 - Automated Tape Placement
 - Automated Collation: 'Pick & Place'
- Acceptance of small Overlaps / Gaps:
 - Similar to thermoset prepreg lay-up
 - Dependent on material quality

Airborne

Laminate Consolidation

- Intermediate laminate form required for rapid forming
- Can be highly automated today
- Approaches:
 - Press Molding
 - Continuous Molding Laminates
 - Continuous Molding Profiles

Laminate Consolidation – Future State

- Greater Customization:
 - Lay-up orientations
 - Non-rectangular blanks material optimization
 - Variable thickness in two dimensions
- Partially consolidated laminates for secondary forming
 - ATL, Pick & Place or AFP lay-up
 - Enable ply drops / build-ups
 - Low pressure blank consolidation

Laser Heated AFP of Thermoplastic UD Tape

Electroimpact

Partially Consolidated Blank: Double joggle formed part

NDI of stamp formed part

Stamp Forming

- Rapid heating and forming of blank
- Very efficient for high volume parts
- Robotic cells developed
- Effective use of capital equipment & tooling

ATC Manufacturing

Premium Aerotec

Stamp Forming – Future State

- Larger and more complex parts
 - Single part per ship set
 - Modular tooling
 - Non-rectangular blanks material optimization
 - Variable thickness: placement accuracy
- Integrated cells using Cobots:
 - Stamp form
 - Machine
 - Dimensional Inspect

Machining, Inspection & Finishing

- Processes not unique to TP composites
- Processes:
 - Machining
 - Dimensional & Visual Inspection
 - Non-destructive Inspection
 - Surface Preparation
 - Prime, Paint & Edge Seal
- Usually performed discretely with some in-process automation

Inspection & Finishing – Future State

- Increased automation
- Surface preparation techniques more appropriate for Thermoplastics
- Flexible, automated & integrated cells eg machine and inspect
- Cobot solutions

ATC Manufacturing

Plasmatreat

Universal Robotics

Complex Parts – Injection Over Molding

ThermoPlastic composites Research Center (TPRC)

- One-step or two-step over-molding
- Integrate:
 - Complex structure
 - Stiffening elements
 - Attachment points

Assembly – Utilize Benefits of Thermoplastics

• Complex Assembly

GKN Fokker

Composites Industrial Revolution Conference 2021

Web

laminate

Conclusions

Conclusions

- Higher levels of automation enable further cost reduction, increased complexity and larger structures
- TP Composites most cost effective at high volumes
- Design for manufacturing:
 - Standardization: lay-ups, radii etc
- Use of flexible automation
- Cobots vs highly robotic cells
- Integrated Structures

Cleansky Program

