

North American Pultrusion Conference

Developing Flame Resistant Polyurethane based Pultrusion for Automotive Battery Applications

Chris Korson BASF Corporation

Who is **BASF**?

BASF – We Create Chemistry

BASF – We create chemistry

Top 100 global automotive suppliers (2021)

Rank Company Sales (in \$100 million)

1	Bosch	491.44		
2	Denso	435.69		
3	ZF	393		
9	D • BASF We create chemistry	213.53		
Source: Automotive News, June ,2022				

BASF is the only materials and/or chemical company in the top 100 suppliers

Elastocoat® Polyurethane Pultrusion Systems: The Story Continues.....

PULTRUSION – BASF Focus

Properties as a Function of Fiber-Length

Fiber Versatility

- Fiber Type
 - Glass
 - Carbon
 - Natural
- Fiber Configuration

- Fiber Mixing
 - Type
 - Configuration
- Sizing
 - Coats and Protects the fiber
 - Interface of the fiber to the matrix
 - Effects the physical performance of the end component

Fiber Architecture (CT Scan Pictures)

BIAXIAL ALL ROVING Alternating • layers of 0° Loose glass ٠ and 90° rovings oriented glass bonded by roving resin **HYBRID UNI-AXIAL** Bundled glass • Top and rovings bottom layer: bonded by biaxial veil Middle layer: • all roving

Transversal

Layer to Layer

Matrix Materials

- Matrix Type
 - Thermoplastic (Low viscosity, reactive, etc)
 - Thermoset (Epoxy, Polyurethane, Polyester/Vinyl ester)
- Environmental Performance
 - Temperature
 - Mechanical
 - Chemical
 - UV
- Processing
 - Line Speed
 - Wet out

Matrix Materials

Elastocoat® Polyurethane Pultrusion Systems

- Fixed Profile
 - Flat/Open,
 - Closed
 - Multiple wall profiles
- Wall Stock
 - Minimum 1mm
 - Maximum over 6 mm
 - Constant Wall thickness is optimum
- Sweep or Run
 - Typically, Straight
 - Curved
 - Compound Curve

Elastocoat® Polyurethane Pultrusion Systems Continuous Composite Value Proposition Advantage vs Metal Solutions

Elastocoat® Polyurethane Pultrusion Systems Continuous Composite Value Proposition Advantage vs Metal Solutions

Tensile Stength/Mass (MPa/Density) UHSS (980 Elastocoat® Elastocoat[®] Magnesium Aluminum AM60B 6000 Series MPa) 74850 GFR 74850 Hvbrid

High Strength

BASF is the leader in the Automotive **Pultrusion Market!**

- Large Processing Window
- Good Wet-out of Fibers
- Excellent Mechanical Properties (80% Rovings).
 - Flex Modulus: ~ 58 GPa
 - Flex Strength: ~1.5 GPa
 - Elongation to Fail: ~3.0%
- Volume Fraction is variable up to 80% GF
- Chemistry has good adhesion to Glass Fiber and Carbon Fiber
- Line speed up to 48"/min 60"/min

Composite Modelling is.... tricky....

- Very predictable up until yield
- Matrix and Fiber Behave independently at the point of failure.
- Fiber Layup Variation

Modelling

- Geometry dependencies
- Loading dependencies
- Processing/Wetout effects
- MAT Card Selection or Internal Development

Sample Generation Modelling

Die - Process Injection Box **ISO + RESIN**

Geometry

Architecture	0º Unidirectional	0-90 Biaxial	0º/+45º/90º/-45º Quadraxial
End Use	Ultrasim Characterization	Ultrasim Validation	
Picture	D.	× ×	***

Fiber Orientation

Architectures

CHALLENGES

- ✤ Highly complex process
- ★ 7+ Variables
- ✤ Early stage on pultrusion

learning curve

- ***** Temperature dependency
- ✤ Strain Rate dependency

Simulation Capabilities

3Pt Bending Impact on Four the Parts

Correlation of Static 3pt Bend Part

23°C

- Processing
- Injection Box Design
- Wet out
- Fiber Alignment
- Line Speed Optimization
- Degradation Analysis
- Failure Analysis

Needs for Automotive Acceptance

- Higher processing rates (cost)
 - Maximize Fiber Wet-out
 - Material Delivery
 - Multiple Dies

Manufacturing

- Bonding Strategies (vehicle assembly)
 - Insitu applied adhesives
 - Over molding / Insert Molding
 - Secondary operations

Pultrusion in Production Pultrusion Value Proposition

27

Where do we go from here?

Extending and Growing Product Life Cycle Focus on "What we didn't know"

Application Development – New Areas

- Metal to Composite Suspension Components and Energy Absorption (Value Prop Driven)
- EV Apps Battery and New Vehicle Architecture
- Joining Bonding Nonmetallic Continuous Fiber
- Product Development Focused on Learnings
 - Thermal Management for EV
 - Higher Performance (Mechanical Properties)
 - Sustainability
 - Bio-Content (Resin and Fiber)
 - Thermoplastic
 - LCA Transparency

Actual Pultruded Samples made at L&L

Higher Performance Products

Elastocoat 74830

- Excellent Wet Out
- Good Mechanical Properties (80% Rovings).
 - Flex Modulus: ~ 52 GPa
 - Flex Strength: ~1.1 GPa
 - Elongation to Fail: ~4.0%
- Provides more ductility
- Chemistry has strong adhesion to Glass Fiber and Carbon Fiber
- Line speed up to 72"/min

Elastocoat HP EXP

- High Tg < 200C
- Excellent Property Profile
 - Flex Modulus: ~ 60 GPa
 - Flex Strength: ~1.8 GPa
 - Elongation to Fail: ~3.0%
- Property Retention after long- and short-term heat exposure
- Line speeds up to 48"/min

Increasing Pultrusion Performance Structural Foam

Focused Application Development EV Battery Structure

- Outside the box
 - Rail reinforcement
 - Body pan structure
- Outer Structure
 - Side and Sill Reinforcement
 - Front and Rear Reinforcemer...
 - Speed Bump Countermeasures
- Inner Structure
 - Long Beams
 - Cross Beams
 - Plates

Drivers for Pultrusion (Continuous Fiber Solutions) for Battery Applications

- Strength to Weight
- Non-Metallic or Non-Conductive Structural Solutions
- V-0 compliance OEM driven
- Thermal Runaway
 - Flame ~1000C for 20 minutes
 - Initial Cell Explosion

- 2-4:1 depending on fiber loading and orientation
- Non-Conductive with High CTI with glass fiber
- V-1 compliant without any development
- Method of Passing with Composites
 - Resin is not an accelerant
 - Highly Filled Structure remains intact
 - Char Layer Protection

Flame Resistant PU Resins for e-Mobility Applications

UL94 Flame test – Pultruded Samples

Flexural Properties

System	Flex Modulus (GPa)	Flex Strength (GPa)
Regular PU system Pultruded 3 mm	50.9	1.54
Halogenated FR system Pultruded 3 mm	54.8	1.45
Halogen-free FR system Pultruded 3 mm	50.2	1.17

A Note on Sustainability The driving Mega Trend

- Multifaceted
 - GHG reduction/elimination
 - Circular Economy
 - Transparency
- Polyurethane (Thermoset)
 - Lighter weight
 - lower in use GHG
 - Less resources utilized
 - High Glass Fiber Content
 - Low System PCF (LCA is being verified)
 - Glass Fiber reclamation possible

Contacts

Elias Shakour- Composite Technologies

- Phone: +1-734-646-7489
- Email: elias.Shakour@basf.com

Ali Zolali – Sr. R&D Scientist

- Mobile: +1-313 400-6403
- Email: <u>ali.zolali@basf.com</u>

Chris Korson – Market Segment Manager – Chassis/Structural

- Mobile: +1-586-484-4637
- Email: christopher.korson@basf.com

BASE We create chemistry