

Laminate Design Considerations & Tools for Lower Mass and Cost, with Higher Performance

Toby Jacobson

Vectorply Corporation

Uncertainty of Laminate Design Optimization

So Many Options!

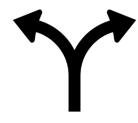
Type of fabric construction Fiber Type Orientation Areal Weight Fiber Fraction Layer Sequence

Get It Right

Win the Business
Good Margins
Happy Customers
Smooth Launch
Good Performance
Achieve Mass Targets

Get It Wrong

Lose the Business
Low Margins
Frustrated Customers
Stressful Launch
Miss Performance Targets
Part is too heavy

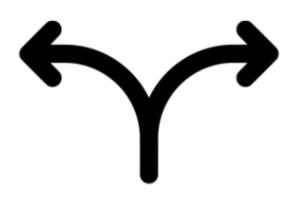


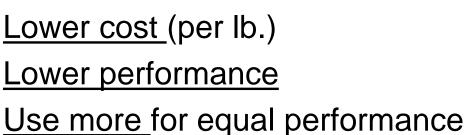
Preview

1. Show a tool to quickly develop and compare different materials and laminate designs

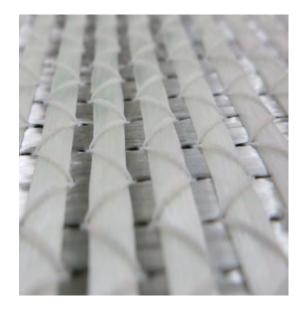
Low Cost / Low Performance Materials
OR
Higher Cost / High Performance Materials

3. Material Selection Methodology that you can consider applying to your own products





Continuous Filament Mat vs Non-Crimp Fabric


CFM

NCF

Higher cost (per lb.)

Higher performance

Use less for equal performance

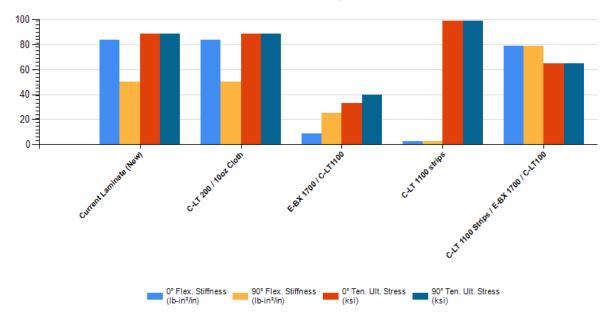
Why so much uncertainty in the material selection process?

- 1. It is very difficult and time-consuming to adequately compare alternative laminates and materials.
- 2. There is a possibility that engineers did a thorough study in the past and applied the same conclusion to all similar products.
 - -A comfort level with existing material may be present.
- 3. Some people may be under the impression that NCF's are too expensive.

Fabrics for Pultrusion

	Continuous Filament Mat (CFM)	Non-Crimp Fabric (NCF)				
Method to hold fibers together	Chemical Binder	Stitching				
Fiber Type	Typically Glass Only	Nearly any fiber can be used R-Glass, S-Glass, E-Glass, Carbon, Aramid, Natural Fibers, and others				
Standard Areal Weight Units oz / ft²		oz / yd²				
Areal Weight Ranges	3/4 oz/ft ² - 3 oz/ft2	6 oz/yd² - 100+ oz/yd2				
Fiber Orientation Random		Unidirectional Plies in "Zeros only", [+/- 45], [+/- 60], [0/90], [45/90/45], [0/45/45], [0/45/90/45]				
Fiber Length	Continuous	Continuous and Oriented				
Cost (for E-Glass)	X	X + (0% - 30%) with some scenarios where NCF is less than CFM				
Fiber Volume Fraction	20-50%	50-60%				
Mechanical Properties	X	X+(10%-200%)				

When does it make sense to use CFM? When is it better to use NCF? North American Pultrusion Conference 2023

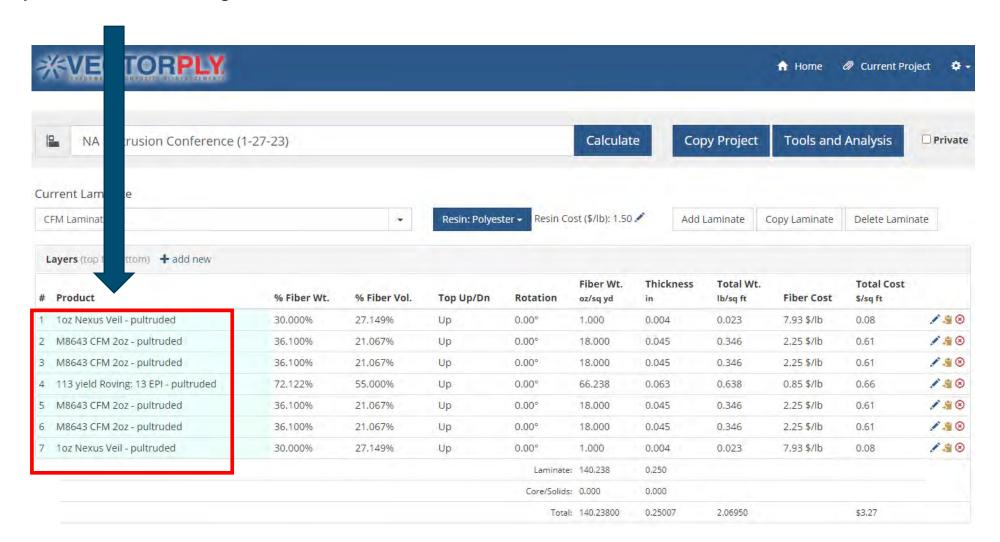

VectorLam Introduction

3

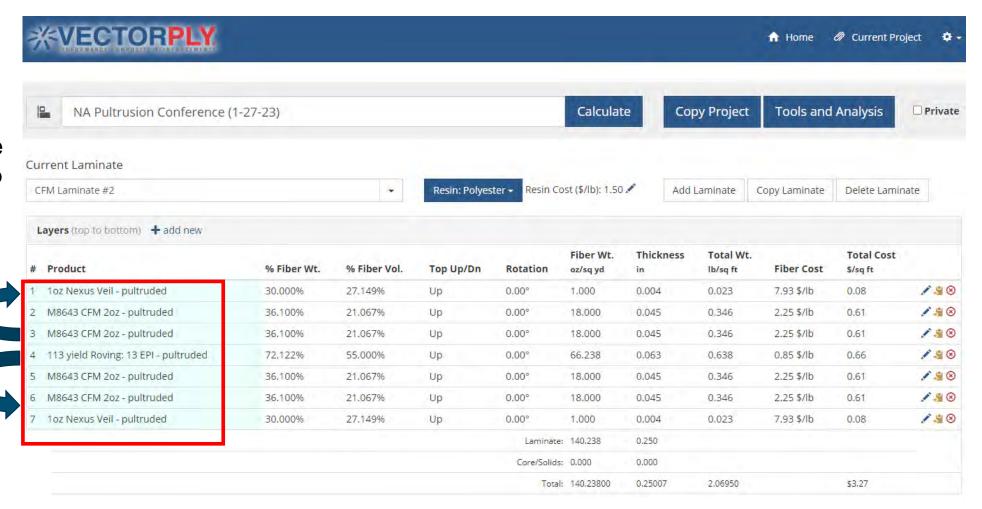
- VectorLam is a tool to quickly compare alternative laminates.
- This is a FREE online tool that is available to anyone with an internet connection.
- Virtually, you can design and compare several laminates per project and layers per laminate.
- Use the existing database of materials or create your own "My Materials" database from a global list of fibers, fabrics, cores, and other materials.
- Analyze laminates with graphical comparisons, customizable laminate comparison tables, or ABD matrices.

#	Product	% Fiber Wt.	% Fiber Vol.	Top Up/Dn	Rotation	Fiber Wt. oz/sq yd	Thickness in	Total Wt. Ib/sq ft	Fiber Cost	Total Cost \$/sq ft	
1	1oz Nexus Veil - pultruded	30.000%	27.149%	Up	0.00°	1.000	0.004	0.023	7.93 \$/lb	0.08	13 8
2	M8643 CFM 2oz - pultruded	36.100%	21.067%	Up	0.00°	18.000	0.045	0.346	2.25 \$/lb	0.61	/ 48
3	M8643 CFM 2oz - pultruded	36.100%	21.067%	Up	0.00°	18.000	0.045	0.346	2.25 \$/lb	0.61	/ 48
1	113 yield Roving: 13 EPI - pultruded	72.122%	55.000%	Up	0.00°	66.238	0.063	0.638	0.85 \$/lb	0.66	/ 4 8
5	M8643 CFM 2oz - pultruded	36.100%	21.067%	Up	0.00°	18.000	0.045	0.346	2.25 \$/lb	0.61	130
5	M8643 CFM 2oz - pultruded	36.100%	21.067%	Up	0.00°	18.000	0.045	0.346	2.25 \$/lb	0.61	/ 4 8
7	1oz Nexus Veil - pultruded	30.000%	27.149%	Up	0.00°	1.000	0.004	0.023	7.93 \$/lb	0.08	1 4 8
					Laminate:	140.238	0.250				
					Core/Solids:	0.000	0.000				
					Total:	140.23800	0.25007	2.06950		\$3,27	

Laminate Comparison

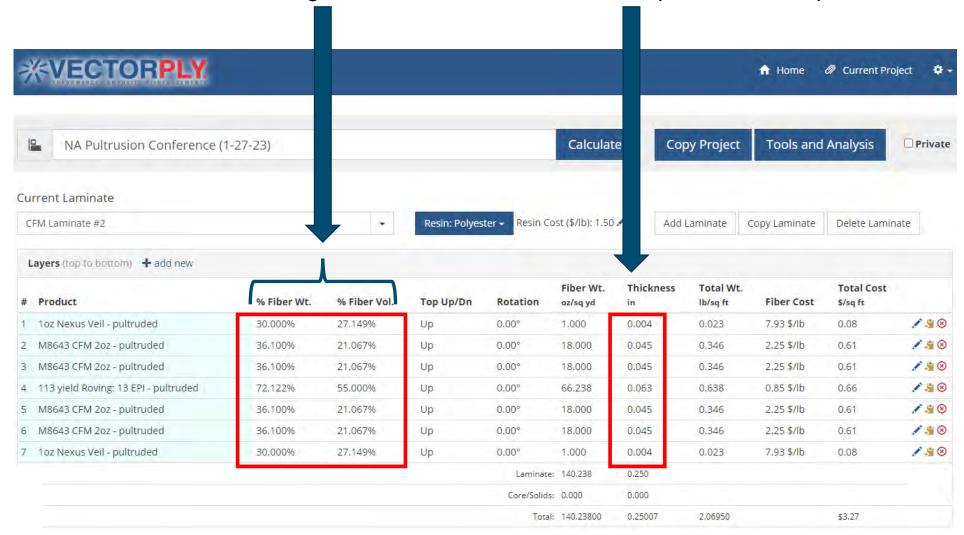


Layers of the Laminate: Including Layers of direct roving

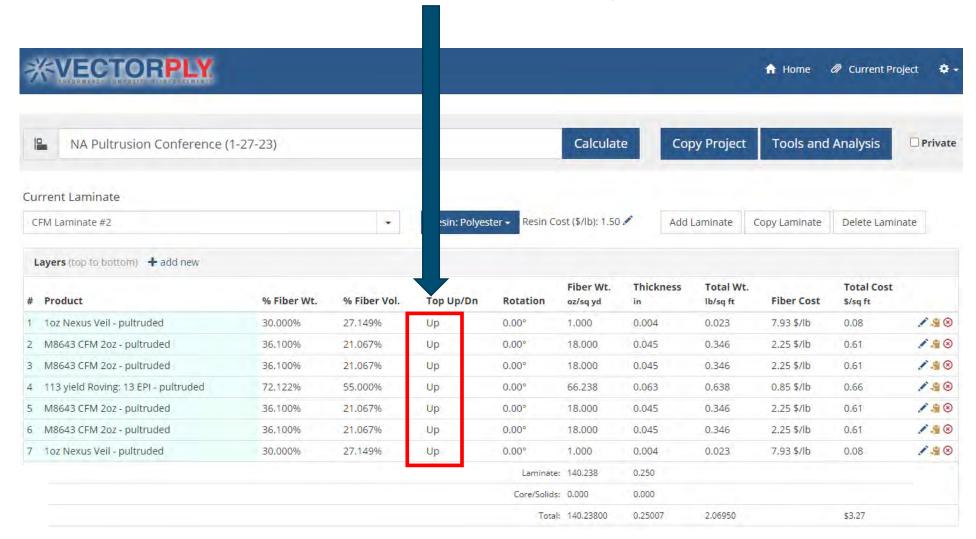

Layer sequence

– drag and drop

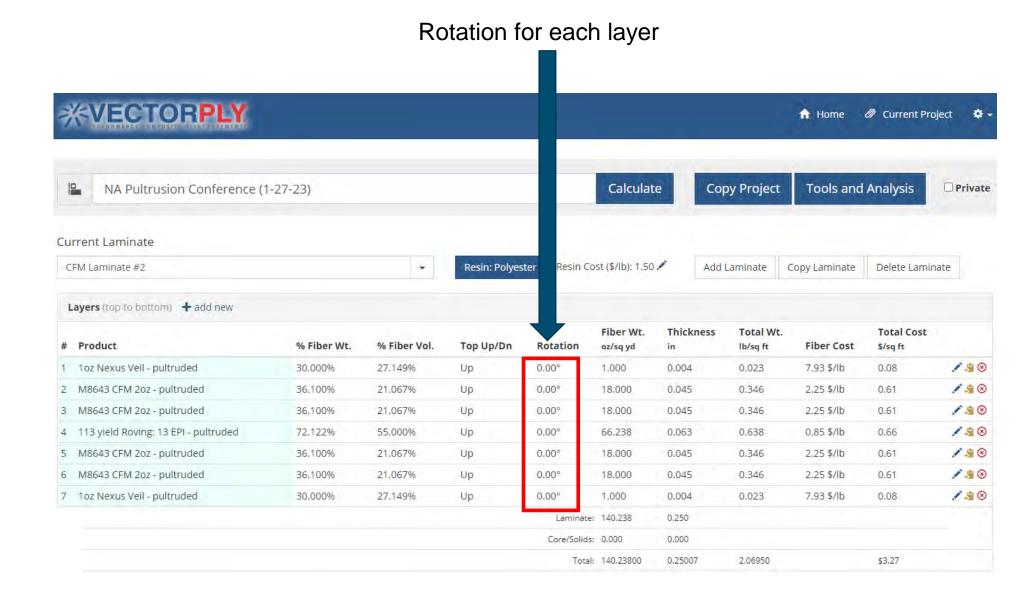
to change the

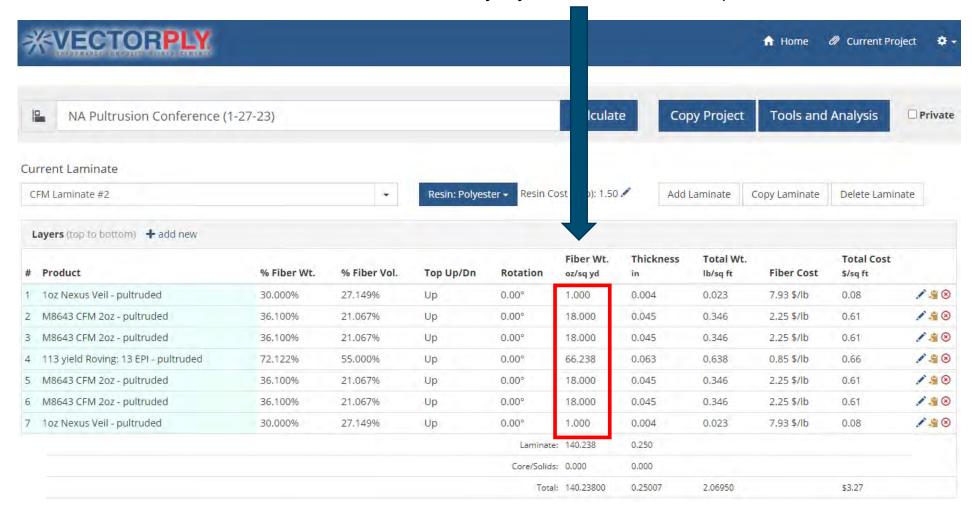

order of the

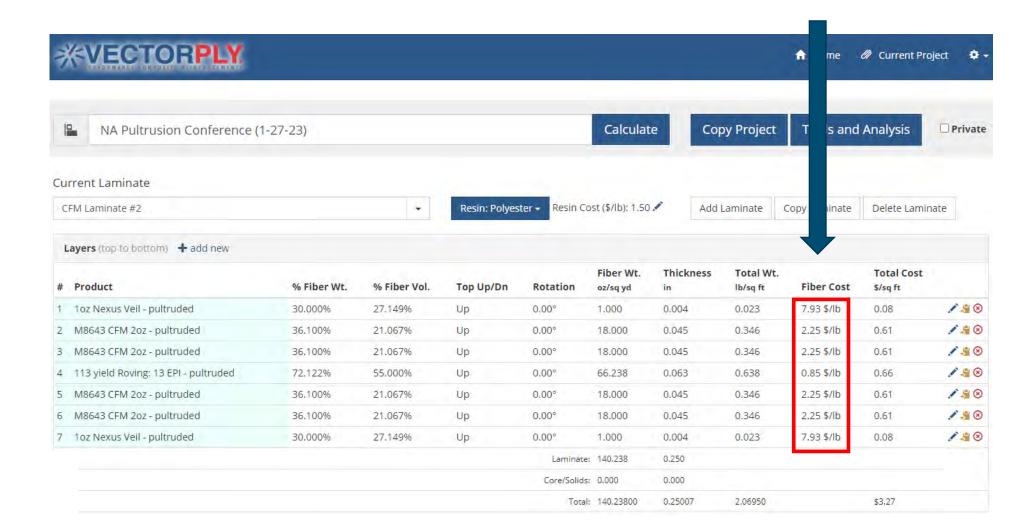
layers.



Fiber Volume Fraction OR Weight Fraction. Thickness is auto updated as a dependent variables







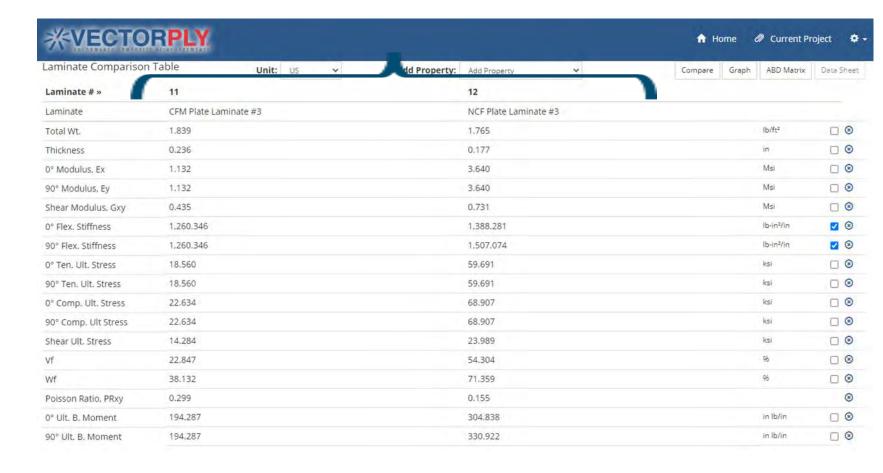
Areal Weight for each layer (populated directly by material selection)

Cost Per Pound

Laminate Comparison Table

- 20 different metrics shown in this table
- Total Weight
- Laminate Cost
- Density
- Thickness
- Fiber Volume and Weight Fraction
- Tensile Modulus
- Flex Modulus
- Thickness
- Ultimate Tensile
- 0 and 90 Degree Properties

Laminate Comparisor	n Table	Unit: US V	Add Property:	Add Property	~	Compare	Graph ABD Matr	ix Data Sheet
Laminate # »	11			12				
Laminate	CFM Plate Lami	inate #3		NCF Plate Laminate #3	3			
Total Wt.	1.839			1.765			lb/ft²	□ ⊗
Thickness	0.236			0.177			in	
0° Modulus, Ex	1.132			3,640			Msi	
90° Modulus, Ey	1.132			3.640			Msi	
Shear Modulus, Gxy	0.435			0.731			Msi	□ ⊗
0° Flex. Stiffness	1,260.346			1,388.281			lb-in²/in	✓ ⊗
90° Flex. Stiffness	1,260.346			1,507.074			lb-in²/in	✓ ⊗
0° Ten. Ult. Stress	18.560			59.691			ksi	
90° Ten. Ult. Stress	18.560			59.691			ksi	
0° Comp. Ult. Stress	22.634			68.907			ksi	
90° Comp. Ult Stress	22.634			68.907			ksi	
Shear Ult. Stress	14.284			23.989			ksi	
Vf	22.847			54.304			96	
Wf	38.132			71,359			96	
Poisson Ratio, PRxy	0.299			0.155				(8)
0° Ult. B. Moment	194.287			304.838			in lb/in	
90° Ult. B. Moment	194.287			330,922			in lb/in	



Comparing only selected laminates

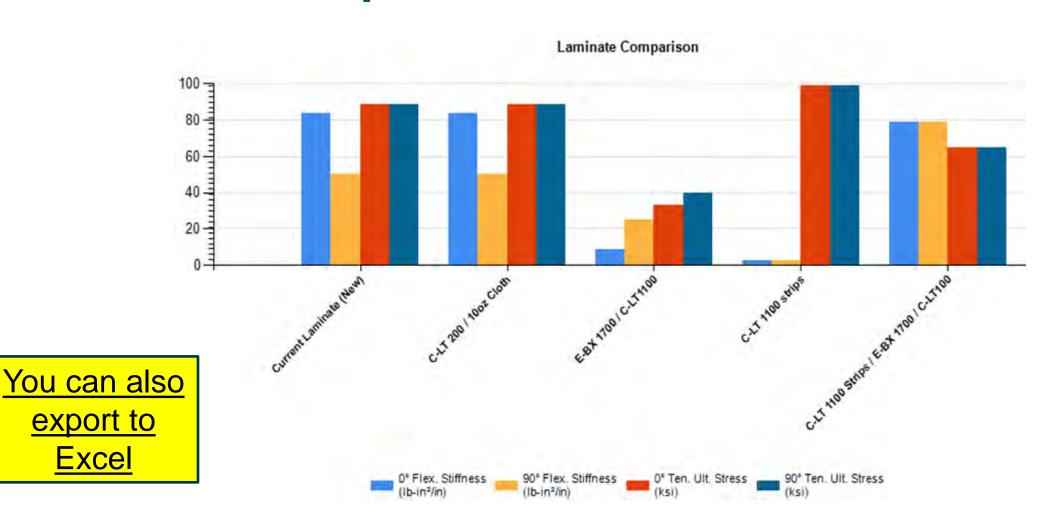
VectorLam Outputs

You Select US or Metric Units

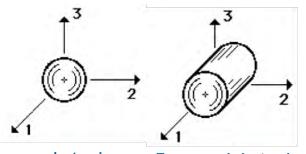
Laminate Comparison	1 Table	Unit US	~	Add Property:	Add Property	~	Compare	Graph ABD N	Matrix Data Shee
Laminate # »	11				12				
Laminate	CFM Plate Lam	inate #3			NCF Plate Laminate	e #3			
Total Wt.	1.839				1.765			lb/ft²	
Thickness	0.236				0.177			in	□⊗
0° Modulus, Ex	1.132				3.640			Msi	
90° Modulus, Ey	1.132				3.640			Msi	□ ⊗
Shear Modulus, Gxy	0.435				0.731			Msi	□ ⊗
0° Flex. Stiffness	1,260.346				1,388.281			lb-in²/i	in 🔽 🛭
90° Flex. Stiffness	1,260.346				1,507.074			lb-in²/i	in 🗾 🛭
0° Ten. Ult. Stress	18.560				59.691			ksi	
90° Ten. Ult. Stress	18.560				59.691			ksi	
0° Comp. Ult. Stress	22.634				68.907			ksi	□ ⊗
90° Comp. Ult Stress	22.634				68.907			ksi	□ ⊗
Shear Ult. Stress	14.284				23.989			ksi	
Vf	22.847				54.304			96	□⊗
Wf	38.132				71.359			96	□ ⊗
Poisson Ratio, PRxy	0.299				0.155				⊗
o° Ult. B. Moment	194,287				304.838			in lb/in	n 🗆 😵
90° Ult. B. Moment	194.287				330.922			in lb/in	n 🗆 😸

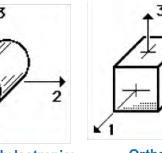
VectorLam Outputs

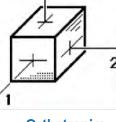
20+ other properties to choose from

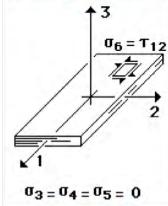


VectorLam Outputs


Excel


How does VectorLam work?

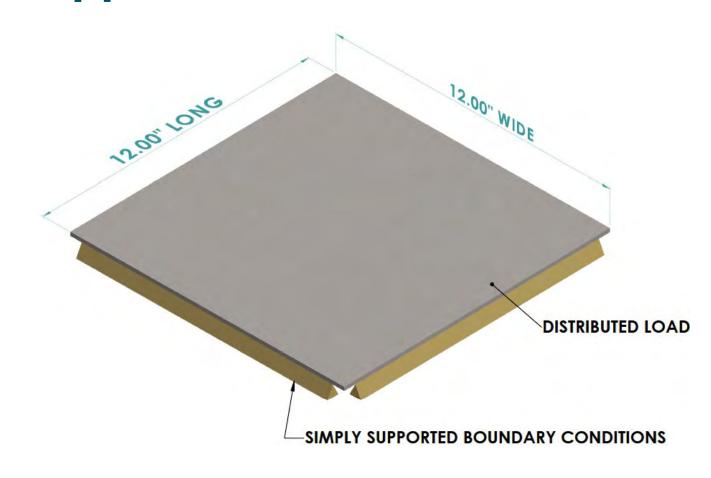

- 1. Uses Classical Laminate Theory & Hooke's Law
- 2. SQL Language is used in Cloud Based platform
- The Lamina "Ply"
 - Made from Uni continuous fiber and matrix
 - This is the building block of the "Laminate"
- 4. Required ply properties for classical Lamination
 - Mechanical Properties along the fiber direction
 - Mechanical Properties transverse to fiber direction
 - **Shear Modulus**
 - Poisson's Ratio d)
 - Minor Poison's Ratio
- 5. We have done correlation and correlate well to physical testing


Isotropic: Metals, Plastics

Transversely Isotropic: Wood, Uni Lamina

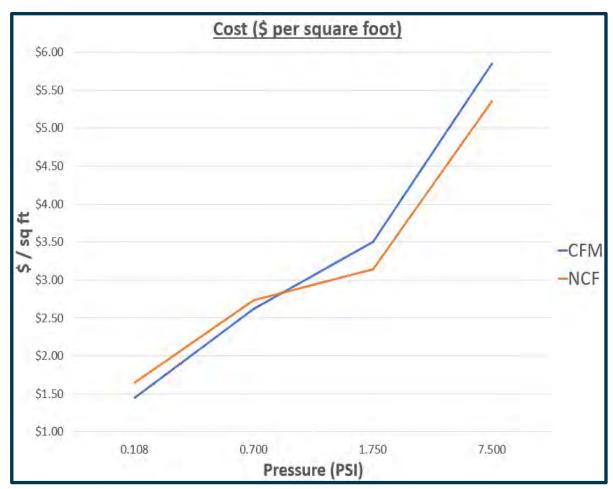
Orthotropic: Special Case Laminates

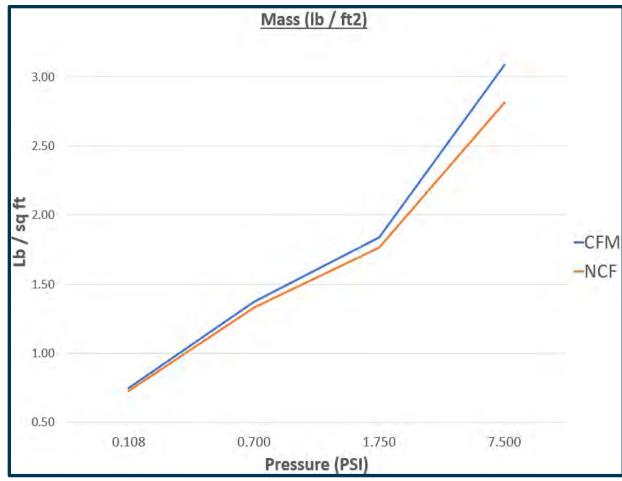
Plane Stress 2D Idealization


Theory of Composites Design (Tsai, 2008)

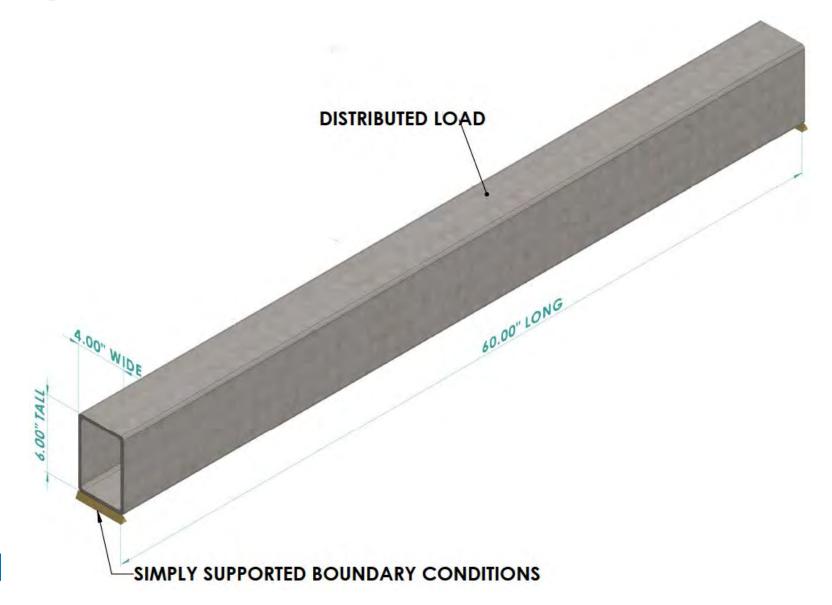
Methodology for a plate application

- Used VectorLam's Plate Tool to develop a laminate that would achieve a specified deflection at a given load.
- Goal: To Increase Load at several increments.
 Keep deflection the same by adding layers of fabric.
- We used a distributed load. Range from .108 psi to 7.5 psi
- Targeted Deflection for all loads = .110 inches
- We recognize that most pultruders would add direct rovings (zeros) to add thickness. For this analysis we added layers of either CFM or NCF to build thickness into the plate.

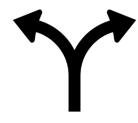

Laminate Construction


	Continuous Fila	ment Mat (CFM)	Non-Crimp Fabric (NCF)			
Pressure	Layers	Thickness (inches)	Layers	Thickness (inches)		
.11 psi	2	0.098	2	0.079		
0.70 psi	4	0.177	4	0.138		
1.75 psi	6	0.236	4	0.177		
7.50 psi	10	0.394	4	0.295		

Results / Outcome



Beam Tool Option



Review

1. Show a tool to quickly develop and compare different materials and laminate designs

Low Cost / Low Performance Materials
OR
Higher Cost / High Performance Materials

3. Material Selection Methodology that you can consider applying to your own products

www.Vectorply.com

Home About Vectorply Video Resources Technical Services Products Markets Contact

Vectorlam

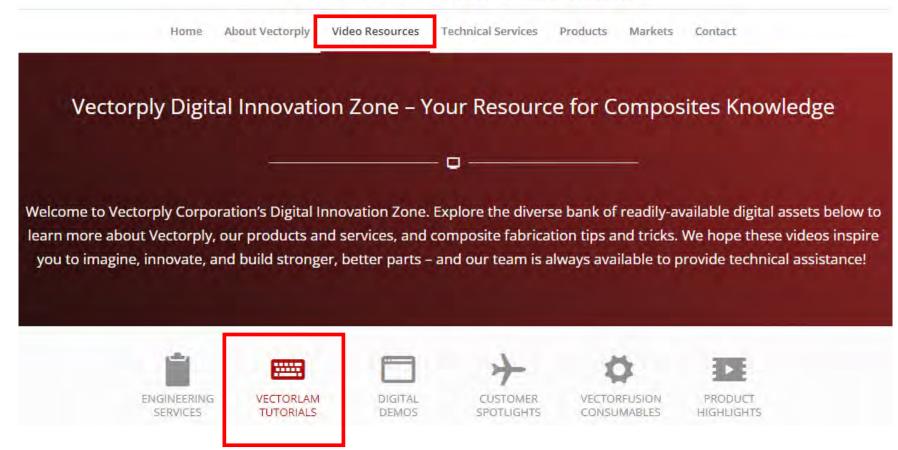
You are here: Home / Vectorlam

VectorLam - The Next Evolution in Laminate Design and Analysis Software

VectorLam is the latest edition of Vectorply's proprietary laminate analysis software. VectorLam provides a cloud-based, multi-platform compatible approach to classical laminate theory and provides a suite of services across diversified market segments. This upgrade from the Excel-based version of VectorLam allows users to build and access laminates on nearly any internet connected device.

VectorLam helps achieve goals of stiffness, strength, weight and cost by allowing users to design the perfect laminate for their application. Whether it is comparing materials, resin, or even manufacturing processes, VectorLam offers the best solution and reports it in clear, concise language. It has never been easier for users to build, review, and adjust their laminates to meet their specific requirements.

Most importantly, VectorLam is free to all users. Just sign in by clicking the logo to the right and start creating!



www.Vectorply.com

