Revolutionizing America's Waterway and Dam Infrastructure with Composites

Eric Johnson, P.E., S.E. Technical Manager for Composites Inland Navigation Design Center U.S. Army Corps of Engineers

17 May 2023

A long time ago in a galaxy far, far away....

Why Fiber Reinforced Polymer (FRP)? USACE: Many old, corroded structures w/ limited O&M funds

Downstream View of Tainter Gate

Boggs Dam Tainter Gates Shown (only 40 years old!) Problem: Low-use, low-funded waterway so lack of maintenance

Flap Gate Flap and sluice gate photos courtesy of Mellen & Associates, Inc.

US Army Corps of Engineers • Inland Navigation Design Center

Why FRP? Life Cycle Cost Savings

• Findings:

- GFRP is cheaper/same for first cost vs steel
- HUGE Life Cycle Cost savings!
- \$72M LCC savings per Tainter gate!

Costs from 2023 Felsenthal Tainter Gate Charrette:

Cost Comparison for 3 Gates	COA 0, 1, 2, 3, 4, 5	
Life Cycle Cost	escription	Total
COA 0 - Baseline Replace in Kind - All New Steel Gates		\$237,311,000
COA 5 - New Full FRP Gate Double Skinplate		\$21,454,000

US Army Corps of Engineers • Inland Navigation Design Center

Who We Are – US Army Corps of Engineers (USACE)

Mission Areas – The Nation's Engineer

Military Missions

Military Construction

COCOM Support, Overseas Contingency Operations (OCO)

Installation Support, Environmental, Energy and Sustainability

Federal / State / Local "Whole of USACE" Capabilities Capacity Development

International and Interagency

Navigation, Flood Control, Disaster Response, Shore Protection, Hydropower, Water Supply, Regulatory, Recreation, Environmental Restoration

Civil Works

Geospatial Support

Common Operating Picture / Environment Civil Works Programs Military Programs

Emergency and Contingency Operations

Contingency Operations

"Whole of Government" Disaster Response and Recovery Life-Cycle Flood Risk Management Critical Infrastructure Warfighter Installations and Energy Environment Water Resources

Research and Development

Real Estate - Acquire, Manage and Dispose / DoD Recruiting Facilities / Contingency Operations

Quick Facts

- 239 Navigation lock chambers at 193 sites
- 716 Flood risk management dams managed by the Corps at 559 projects
- Over 1000 Coastal, Great Lakes and Inland harbors and 25000 miles of channels maintained with 40 States served directly by Corps ports & waterways
- Largest provider of federal hydropower meeting 3% of US energy needs with 75 Hydropower projects with 356 generating units
- 12 million acres of Corps land and water providing recreation opportunities in 43 states including over 9600 Campsites
- 256 Million Recreation visits per year (more than any other Federal agency in 2020)

State of the Infrastructure

A Joint Report by the Bureau of Reclamation and the U.S. Army Corps of Engineers

Why Water Transportation? Efficient & Environmental

- Think of USACE like a DOT for Water Transportation
- Inland Waterway move ~630 million tons of cargo valued at over \$73 billion annually

As of: 30 AUG 22.

Civil Works – Divisions and Districts

8 Civil Works Divisions (minus Transatlantic Division)

1 Civil Works ONLY Division (Mississippi Valley Division)

> 37 Civil Works Districts

18 Civil Works ONLY Districts

Watersheds define Civil Works Boundaries

1824 1st USACE Civil Works mission to "clear obstacles on Ohio and Mississippi Rivers and at ports."

CONTRACTOR - NUMBER

(W)

(00)

22

10

Civil Works Operations

There are over 3000 <u>Mission Essential Civil Works Projects</u> Requiring Continuous Operation to meet the needs of the American People.

US Army Corps of Engineers • Inland Navigation Design Center

What USACE Infrastructure Looks Like

lavigation Lock

Navigation Lock and Dam

Dewatering Structures

Flood Risk Management Dam

Scale of the Opportunity

13,000 steel structures within navigation and flood risk management portfolios.

Based on 50-year steel design life, USACE on the cusp of replacing 260

Composites – Where We've Been

- 1990's: ACMA and USACE Engineering Research and Development Center begin collaboration
- 2000's: USACE military composite research
- 2010's: USACE Civil Works demonstration projects
- 2020's: USACE Civil Works implementation projects

Thermoplastic Bridge

US Army Corps of Engineers – United Facilities Guide Specifications (UFGS)

- UFGS 35 20 15 FRP Composites for Low-Head Water Control Structures
- UFGS 35 59 13.14 20 Polymeric Fender Piles

UNCLASSIFIED

- UFGS 06 73 01 Fiberglass Reinforced Plastic (FRP) Grating
- UFGS 06 71 33 Fiberglass Reinforced Plastic (FRP) Ladders
- UFGS 06 82 14 Fiberglass Reinforced Plastic (FRP) Pipe and Tube Railings
- UFGS 04 01 20.75 Masonry Strengthening Using Surface Applied FRP Composites
- UFGS 04 01 20.73 Masonry Strengthening Using FRP Bars
- UFGS 04 01 20 Rehabilitation of Reinforced and Unreinforced Masonry Walls Using FRP Composite Structural Repointing
- UFGS 04 01 21 Rehabilitation of Reinforced and Unreinforced Masonry Walls Using Surface Applied FRP Composites

US Army (

Completed Projects – Monitoring in Progress

Polymer Slides (Bankhead, SAM)

· Reaction rollers prone to seize

Initial cost avoidance: \$2.7 M (20 ga

50-year cost avoidance: \$11M

· Replaced with UHMW slides

FRP Miter Blocks (H. Chittenden, NWS)

Replaced severely corroded steel

Reduced weight; easy to install

Cost competitive with steel

Minimal wear after 4 years

Initial cost avoidance: \$0
50-year cost avoidance: \$2M

USACE Demonstration Projects

• Success: 6 Efforts at 6 Locations

Coming Soon: 11 efforts at 10 Locations

Building on USACE Success

Several Demonstration Projects

- Illinois Waterway River Dam Wicket Gates (MVR)
 - 3 prototype wickets installed at Peoria Dam in 2015
 - Excellent performance no measurable wear/damage
 - Timber wicket gates: more expensive with avg 10-15 year life
 - FRP wicket gates: less expensive with 50+ year life
 - MVR ordered 100+ FRP wicket gates for delivery in 2023 (in production)

50-yr Cost Savings ~ \$20M

- East Fork Bridge (LRH)
 - Corroded steel piles reduced bridge rating
 - 25% of the time and 1/3 the cost of traditional repair

50-yr Cost Savings ~ \$1.2M

- Chittenden Miter Gate Contact Blocks
- ▶ Joint effort by MVR, LRH, INDC, ERDC, & WVU

US Army Corps of Engineers

Inland Navigation Design

Partners

Working with partners around the world to share information and best practices

Rijkswaterstaat Ministry of Infrastructure and Water Management

Photo: ACMA industry open house at W.P. Franklin Lock and Dam in Florida 2/22/23

US Army Corps of Engineers • Inland Navigation Design Center

17

Large Hydraulic Structure Applications

US Army Corps of Engineers • Inland Navigation Design Center

Opportunities for Pultrusions

• What components can FRP provide better performance and/or reduced maintenance?

UNCLASSIFIED

US Army Corps of Engineers • Inland Navigation Design Center

Brainstorming: Handrail, Grating, Ladders, Trashracks, Valve bulkheads, Floating mooring bitts, Sheet Piling, Pipe Piling, Stairs, Bridges, Mooring Cells, Misc Metals, Valves?, Light poles?, Rebar in horizontal concrete, Gates, Guidewalls

US Army Corps of Engineers • Inland Navigation Design Center

Handrail, Grating, and Ladders

• Readily available, off-the-shelf

Photos courtesy of Strongwell

nland Navigation Design Center

Trashracks, Valve bulkheads. Floating Mooring Bitts

UNCLASSIFIED

Hybrid Pultruded & VIP

US Army Corps of Engineers • Inland Navigation Design Center

Sheet pile and Pipe Pile

- FRP Sheet Piling
- Vinyl Sheet Piling (for more info see: ERDC General Design Guide for PVC Sheet Pile)
- EM 2502 and UFGS spec for FRP & PVC sheet pile complete and in publication
- FRP Pipe Piling

FRP sheet pile

PVC sheet pile floodwall installed 1998 in Jefferson Parish, Louisiana

FRP pipe pile

US Army Corps of Engineers • Inland Navigation Design Center

Mooring Cells, Dolphins, and Fendering

Fendering can include FRP, HDPE, & UHMW-PE

US Army Corps of Engineers • Inland Navigation Design Center

Concrete Reinforcement

- Fiberglass (GFRP) rebar has been industry adopted by ACI with its own design code (ACI 440_11)
- Good application would be horizontal concrete surfaces exposed to salt

US Army Corps of Engineers • Inland Navigation Design Center

USACE Efforts and Areas for Collaboration

Guidance and Standards

- Industry Standards such as ASCE/SEI 74
- ACMA Manufacturers Accreditation (Quality Control)
- UFGS Specifications
- USACE Design Manual

Education and Training

- Industry Webinars
 - USACE Composite Users' Group (bi-monthly w/ 150+ people)
- Training
 - Inspection, Testing, and Repair
 - Quality Assurance testing of products

Design Charrettes

- Decision and Design Charrettes
- Ownership
 - O&M Manuals

US Army Corps of Engineers

 Inland Navigation Design Center

26

How to Get Involved

- Coordinate with USACE (<u>eric.o.johnson@usace.army.mil</u>) and ACMA
- acmanet.org for opportunities to connect
- Signup for contract notices in the market at <u>https://sam.gov/</u> using keywords "Army Corps of Engineers" and "FRP"

WHERE WE'RE AT

- Completed projects: 4
- Completed design charrettes for viability: 7 (Gate types: lift, miter, sector, Tainter, bulkheads)

UNCLASSIFIED

- Current contracted projects: 5 (wickets, bulkheads, miter gate contact blocks)
- Funded In-development projects: 4 (lift gate, sector gate, bulkheads, Tainter gate) ~\$20M
- Future FY identified projects: 15 ~\$150M

CONCLUSIONS

- How do we improve on the poor performance of existing gates with the limited O&M money they receive?
- Need a low-to-no maintenance solution!
- Need a cost-effective solution!
- FRP is an answer!

Downstream View of Tainter Gate

More Information

Composites Manufacturing Magazine – Spring 2023

Navigating an Emerging Market By Susan Keen Flynn

https://compositesmanufacturingmagazine.com/2023/05/navigating-an-emerging-market/

US Army Corps of Engineers • Inland Navigation Design Center

Questions? Comments? Ideas?

UNCLASSIFIED

Eric Johnson, PE, SE Composites Program Manager Inland Navigation Design Center Eric.O.Johnson@usace.army.mil

US Army Corps of Engineers • Inland Navigation Design Center