

North American Pultrusion Conference

From Small Colorful Elements to the Final Profile: A Simulation of the Pultrusion Process

Dipl.-Ing. David Löpitz

Fraunhofer Institute for Machine Tools and Forming Technology IWU

Simulation in a 70 years old process - Why?

Advantages of simulation

- Reduction of development times (from the idea to the finished profile)
- Reduction of time-consuming trials (end with the "Trial End Error"-method)
- Increase of the economic efficiency (optimized process parameters)

Challenge of simulation

- Building up know-how
- Qualification of new or customized fiber/matrix systems

Variation of the pultrusion parameters

"The journey is the reward"

А

B

Integrated measuring systems

Without external electrical field With external electrical field At the pultrusion line 000 Θ • Temperature Pull-off force • Pull-off speed Inside the tool system • Temperature Polyme • Pressure Ion viscosity Inside the profile Fringe field Bulk field • Temperature Ion viscosity

Selected trial results

- Pressure curves
- DEA curves
- Temperature curves (Validation)

Selected trial results – pressure

A

North American Pultrusion Conference 2023

Selected trial results – pressure

Selected trial results – pressure

Selected trial results – DEA

Simulation model

Validation profile • Trials with a U-shape

Validation profile

Simulation

Curing

Distortion

Die entrance (near 0 % cure) **Outlook and application**),129 9.0303 Min Die exit (3 - 91 % cure)3 m after die exit (83 – 96 % cure)

• Hybrid profiles – inline combination of metal sheets and FRP

Outlook and application

Summary

✓ Sensored die with different cross-sections

Data generation for validation (material & process)

Deeper process understanding

Curing simulation (validated)

✓ Distortion simulation (validated)

Tool for process design

• Die design

- Optimization of process parameters
- Deeper process understanding for faster adjustments

Contact

Dipl.-Ing. David Löpitz Group Leader Pultrusion

Tel.+49 371 5397-1364Mobil+49 173 7957 619David.Loepitz@iwu.fraunhofer.de

www.iwu.fraunhofer.de/pultrusion

Fraunhofer

IWU

Federal Ministry of Economics and Technology