

Advancements in Pultruded FRP Connection Design and Detailing

David Pirchio, PhD, MSCE, MSAE Frost Engineering & Consulting

David Pirchio, PhD, MSCE, MSAE

01/2020 – Current: Project Engineer at Frost Engineering & Consulting – Specialization in design of pultruded fiber reinforced polymer (FRP) structures

08/2020 – 05/2023: Ph.D. in Civil Engineering – Specialization in structural applications of pultruded FRP

08/2018 – 08/2020: M.S. in Civil Engineering – Specialization in seismic risk assessment of medieval unreinforced masonry religious buildings

09/2012 – 03/2018: B.S. + M.S. in Architectural Engineering -Specialization in seismic design and structural rehabilitation

Strength Reduction Factors and Reliability Analysis

Orthotropic Material Properties and Angle Dependency

Lower-bound specified mechanical properties	ASCE/SEI 74	Manufacturer A	Manufacturer B		
Longitudinal tensile strength	210 MPa	210 MPa	210 MPa	Collector	Force due to Isteral loading Pultrusion direction
Transverse tensile strength	50 MPa	50 MPa	50 MPa	beam	
Longitudinal tensile modulus	21,000 MPa	17,200 MPa	17,200 MPa		rore due to Resultant
Transverse tensile modulus	5,500 MPa	5,500 MPa	5,500 MPa	,	
1.00 1.00 0.80 0.60 $H^{1/2}$ 0.60 $H^{1/2}$ 0.40 0.20 0.20 0.00 0.10 20 30 40 Differential angle betwo	0 50 60 70 80 cen the pultrusion direction	ASCE/SI 90 on and the applied force	EI 74 & Pre-Standard	Braced connectio n	Force due to Internal loading

Material strength

Connection strength for case study connection

Semi-Rigid Connections

Test, Design Equations, and Parametric Study

- Limited structural application of the results due to the size of the tested members
- High cost of the proposed configurations due to the large number of connectors utilized
- Inapplicability to single-story platforms due to the interaction of the clip on the top flange with the deck
- Limited sample size of the test conducted (i.e., no defined nor defined design strength reduction)
- Low efficiency of the connections due to configurations borrowed from steel connections that engage weak material properties of pultruded FRP

B-I10-W6-2F

20

-0.20

-0.20

40

-0.10

-0.10

M_{db}

 M_{db}

0.00 Rotation, φ (rad)

0.00 Rotation, φ (rad)

$$\varphi = \varphi_c + \varphi_{e,d}$$

$$\varphi = \frac{P \sin \beta L_c}{k_r}$$

$$\varphi_c = \frac{P \sin \beta L_c}{K_r}$$

$$\varphi_{e,d} = \frac{y_{(x_3=0)} - y_{(x_4=L_{e,b}-r_b)}}{L_{e,b}} - \frac{y_{(x_1=L_c-L_{e,c})}}{L_{e,c}}$$

$$K_r = \left(\frac{1}{k_r} - \frac{\varphi_{e,d}}{P \sin \beta L_c}\right)^{-1}$$

$$K_r = \left(\frac{1}{k_r} - \frac{\varphi_{e,d}}{P \sin \beta L_c}\right)^{-1}$$

L _{e,b}			
Туре	k _r (kNm/rad)	<i>K_r</i> (kNm)	K _r / k _r
A-I10-W6	519	970	1.83
B-I10-W6-1F	785	1,227	1.74
B-I10-W6-2F	670	1,275	1.82
B-I12-W8-S	1,617	3,167	2.02
B-I12-W8-L	1,993 – 2,880	3,912 – 3,250	1.95 – 1.12

Low class of lateral loading

Seismic:
$$S_s = 0.321g$$

 $S_1 = 0.083g$
 $T_L = 16s$

Wind: V = 49.2 m/s (110 mph)

Moderate class of lateral loading

Seismic: $S_s = 0.552g$ $S_1 = 0.128g$ $T_L = 16s$

Wind: V = 53.6 m/s (120 mph)

High class of lateral loading

Seismic:
$$S_s = 1.500g$$

 $S_1 = 0.300g$
 $T_L = 16s$

Wind: V = 62.6 m/s (140 mph)

Applications

THANK YOU FOR THE ATTENTION

Special thanks to: University of Notre Dame; Strongwell, Advantic; Elizabeth DePaola, CEEES '22 (University of Notre Dame); Jack Mowat, CEEES '22, MEng '23 (University of Notre Dame); Lee Ngochi, CEEES '23 (University of Notre Dame); Capra Williams, MEng '23 (University of Notre Dame); Joseph Perri, EIH Chief Technician (University of Notre Dame); Ruchi Rathod, PhD Student, ISNAP (University of Notre Dame);

