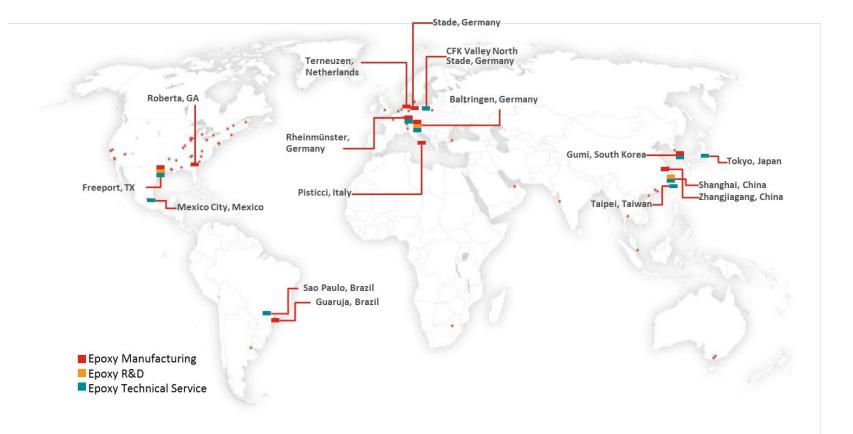

North American Pultrusion Conference

Alkaline Durability of Pultruded BFRP Bars for Concrete Reinforcement

Huifeng Qian, Ph.D Research Scientist Olin Corporation Francisco De Caso, Ph.D Principle Scientist University of Miami

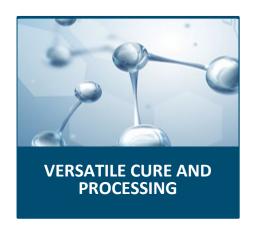

About Olin

Global Epoxy Presence

Manufacturing and R&D Centers on Four Continents with an Extensive Global Logistics and Distribution Network

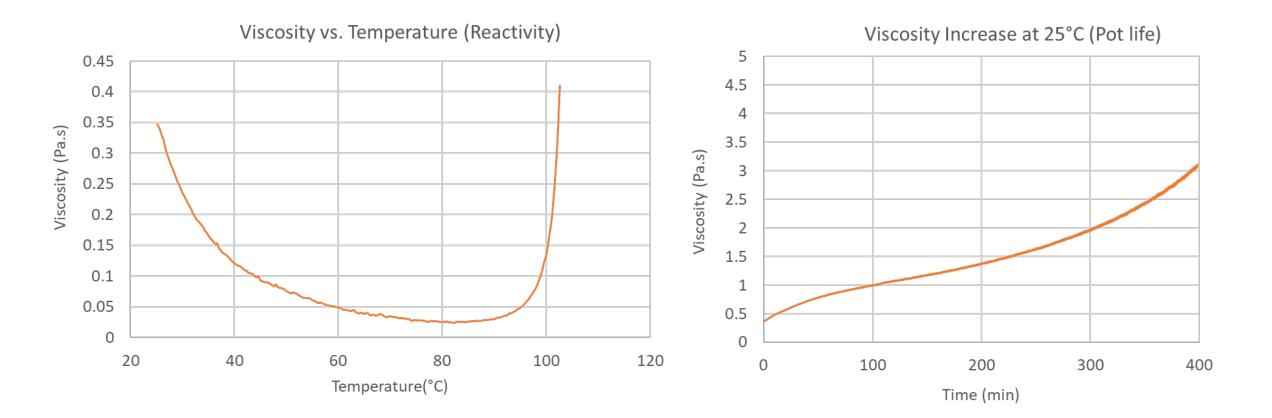
Applications of Epoxy Based Composites

Composites based on Epoxy matrices have been used in various applications with extreme durability.


Why Epoxy For FRP Rebar?

HIGH CORROSION RESISTANCE

SUPPLY CHAIN RELIABILITY


Objectives

Evaluate the performance of epoxy based BFRP rebars made by industrial production Collect mechanical properties of BFRP rebars before and post alkaline solution treatment

Compare the data acquired from BFRP rebars to FDOT 932 or ASTM D7957 Analyze alkaline durability of BFRP Rebar for Concrete Reinforcement

Rheo-kinetics of Epoxy System

Desired balance of fast reactivity and long pot life

Experiment- Testing Methods (Selected)

ASTM D7205 Tensile

ASTM D7913 Bond Strength to Concrete

ASTM D7914 Bent Bar

ASTM D7617 Trans. Shear Behavior

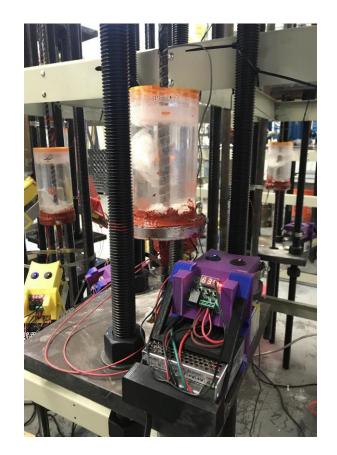
ASTM E2160 Glass Transition Temp.

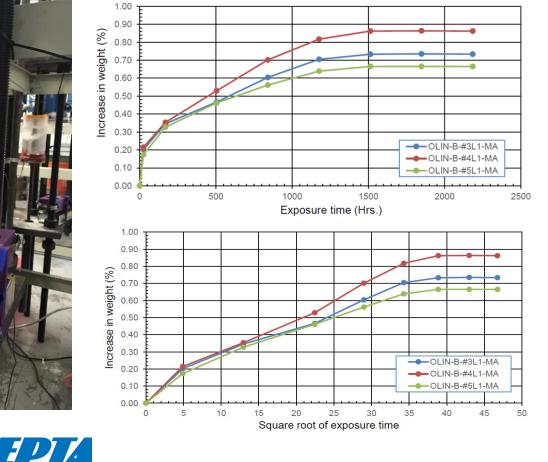
Tested by Structures and Materials Laboratory in University of Miami

BFRP Rebar Behavior Prior to Alkaline Solution Treatment

*Selected data from Sample #5

Methods	Test Description	SPEC. FDOT 932	Test Values	Comment	•
ASTM D7617	Guar. Transverse Shear Strength	>19 ksi	21.0 ksi	Pass	
ASTM D2584	Fiber Content (by weight)	>70 %	79.8 %	Pass	•
ASTM D7205	Guar. Tensile Force	29.1 kip	33.1 kip	Pass	
	Tensile Modulus of Elasticity	≥ 6.5 Msi	7.0 Msi	Pass	
	Tensile Strain	≥ 1.1%	1.6 %	Pass	
ASTM D792	Measured Cross Sectional Area	0.288 to 0.388 in2	0.292 in2	Pass	
ASTM D570	Moisture Absorption Short Term	≤ 0.25 %	0.17 %	Pass	
	Moisture Absorption Long Term	≤ 1.00 %	0.67 %	Pass	
ASTM D7913	Guar. Bond Strength	>1100 psi	1227 psi	Pass	
ASTM E2160	Degree of Cure	>95%	99.1 %	Pass	G
	Glass Transition Temperature (DSC)	>100 °C	139 °C	Pass	


- 3 sizes of rebars (0.109, 0.207, 0.292 in²) were tested
- All three BFRP rebars meet or exceed FDOT 932 SPEC.



Lab Accelerated Treatment for Alkaline Resistance

- Post Alkaline Resistance per ASTM D7705 guideline, 90 days at 60 °C
- Saturated water adsorption after 90 days treatment

Durability Performance - Post Alkaline Solution Treatment

Test Method	Test Description	Spec. FDOT 932	Values	Result			
SAMPLE #3							
ASTM D7205	Tensile Load Retention (with load)	>70 %	78.3 %	Pass			
ASTM D7617	Trans. Shear Strength Retention	n/a	84.2 %	n/a			
ASTM E2160	Degree of Cure	>95 %	99.06 %	Pass			
	Glass Transition Temperature (DSC)	>100 °C	139 °C	Pass			
SAMPLE #4							
ASTM D7205	Tensile Load Retention (with load)	>70%	92.3 %	Pass			
ASTM D7617	Trans. Shear Strength Retention	n/a	107.6 %	n/a			
ASTM E2160	Degree of Cure	>95 %	99.4 %	Pass			
	Glass Transition Temperature (DSC)	>100 °C	128 °C	Pass			
SAMPLE #5							
ASTM D7205	Tensile Load Retention (with load)	>70 %	89.8 %	Pass			
ASTM D7617	Trans. Shear Strength Retention	n/a	106.2 %	n/a			
ASTM E2160	Degree of Cure	>95 %	99.1 %	Pass			
	Glass Transition Temperature (DSC)	>100 °C	139 °C	Pass			

- All three BFRP rebars meet or exceed FDOT 932 SPEC
- Trans. Shear behavior indicates adequate thermoset protection

- Nominal #3, #4 and #5 BFRP (Basalt Fiber Reinforced Polymer) rebars were made with epoxy system by industrial production.
- A thorough study on those BFRP rebars was conducted at UM-SML (University of Miami, Structures and Materials Laboratory), a FDOT (Florida Department of Transportation) qualified testing facility.
- The durability performance was evaluated through an accelerated environmental treatment that involved a 90day immersion in alkaline solution at 60 °C.
- Prior to the accelerated environmental treatment, the BFRP rebars exhibit physical-mechanical properties that meet or exceed FDOT 932 specifications, or ASTM D7957.
- Post treatment evaluations indicate that the BFRP rebars possess higher tensile load retention (78%-92%) than the FDOT 932 requirement/ GFRP rebars (>70%).
- Overall, the testing outcomes suggest epoxy based BFRP is capable providing safe and reliable rebars that meet FDOT requirements.

Contact Information

Bhavesh H. Muni Global Business Leader, Olin Advanced Electronics & Composites Email: bmuni@olin.com Tel: +1 562-412-9962

<u>Huifeng Qian</u> Research Scientist, Olin Epoxy R&D Email: hqian@olin.com Tel: +1 979-269-4482

