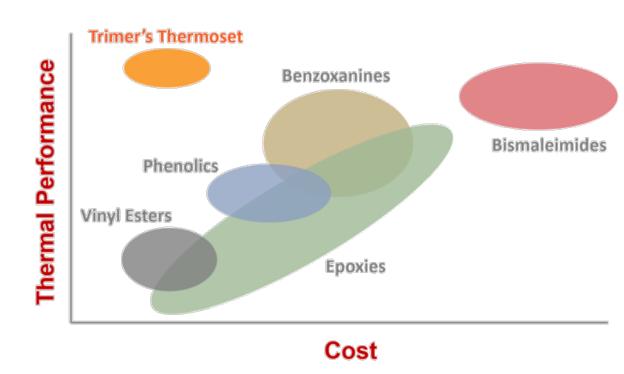


North American Pultrusion Conference


Novel Resin for High Strength FST Rated Pultrusion

Henry A. Sodano, PhD Trimer Technologies, LLC

Advanced Resin Technology

- Trimer has developed pultrusion resins which can enable high pull speed, fire resistance and high strength
- Polymer exhibits:
 - High strength, stiffness and toughness
 - Non-flammable with V0 and Class A E84
 - High glass transition temperature
 - Can be bath or injection processed
 - Pull speeds can exceed 10 ft/min

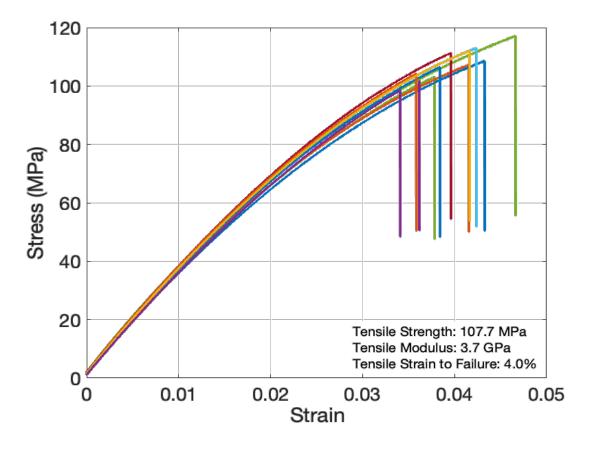
Resin Performance Comparison

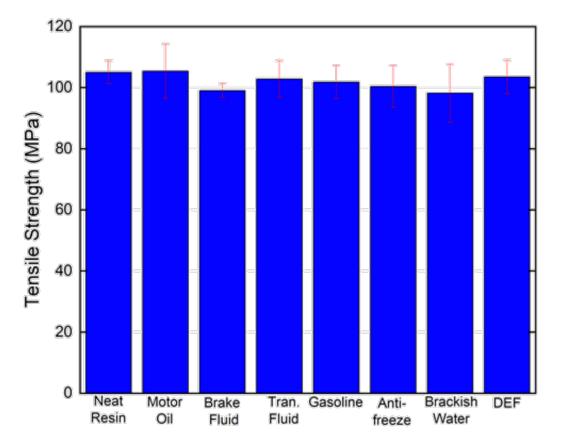
• Trimer has developed low cost, high strength polymers with excellent FST properties which outperform competing resins while enabling faster pull speed

Material Property	Trimer Technologies' RTM Resin	Dow Voraforce 5300	Huntsman Araldite LY 3585 / Aradur 3475	AOC VIPEL FO10 BIS-A VE	Reichhold DION IMPACT 9102-75
Polymer Type/Chemistry	-	Ероху	Ероху	Vinyl Ester	Vinyl Ester
Glass Transition, Tg Dry °C	225	120	110	130	99
Tensile Strength (MPa)	105	68	77.5	88	79.2
Tensile Modulus (GPa)	4.0	2.8	2.8	3.2	2.9
Tensile Strain to Failure, %	4.0	7	9	6.2	4.5
Compressive Strength (MPa)	149	-	-	121	108.9
Flexural Stength (MPa)	140	-	-	153	144
Fracture Toughness, K _{1C} (MPa/m ^{1/2})	1.03	1.22	0.85	0.6	-
Viscosity (cP at 23 °C)	200	500	1,000	3,200	170

Resin Performance Comparison

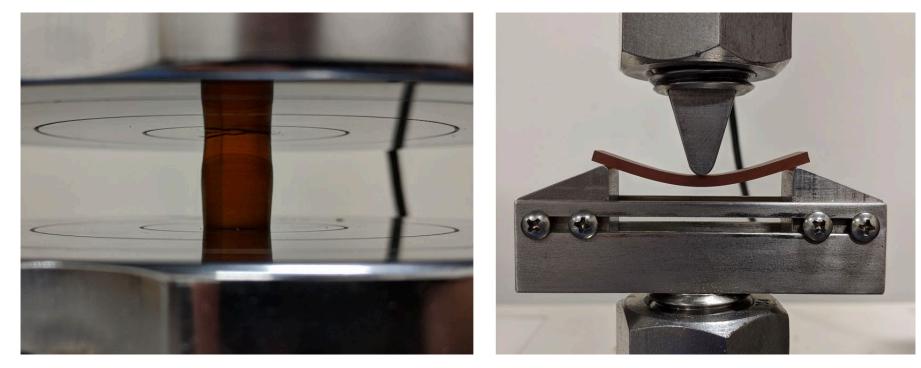
 Trimer's resin outperforms competing 350° F autoclave cured resins while enabling pultrusion


Material Property	Trimer's Resin	Hexcel 8552	Hexcel M74	Hexcel 3501-6	Cytec 5250 BMI	Hexcel F650 BMI	Cytec 2237
Polymer Type/Chemistry	-	Ероху	Ероху	Ероху	BMI	BMI	Polyimide
Glass Transition, Tg Dry °C	>400*	200	194	210	271	316	338
Tensile Strength (MPa)	105	120	83	45.5	103	-	38.6
Tensile Modulus (GPa)	4.0	4.6	4.1	4.2	4.6	-	3.9
Tensile Strain to Failure, %	4.0	1.7	-	1.15	4.8	-	1.5
Fracture Toughness, K _{1C} (MPa/m ^{1/2})	1.03	1.34	-	0.67	0.85	0.46	0.33
Flexural Strength (MPa)	140	-	69	-	163	-	-
Compressive Strength (MPa)	149	-	-	-	-	-	-
H ₂ O Equilibrium Absorption	2.5%	3.1%	-	3.1%	4.2%	4.3%	4.4%
Cure Schedule	<60 sec at 250 °F	1h at 250°F then 2h at 350°F	2h at 350⁰F	1h at 240°F then 2h at 350°F	6h at 375°F then 6h at 440°F	4h at 350°F then 8h at 450°F	3.5h at 425°F then 475 °F for 1h then 600 °F for 3.5h



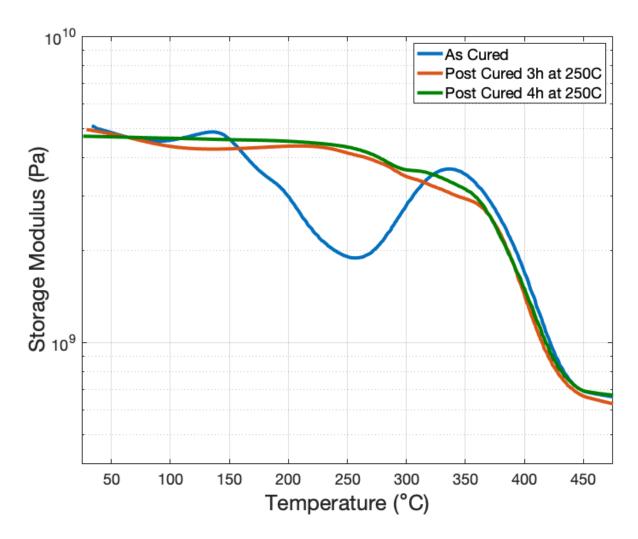
Resin Properties

• Resin exhibits aerospace grade properties and high strain to failure

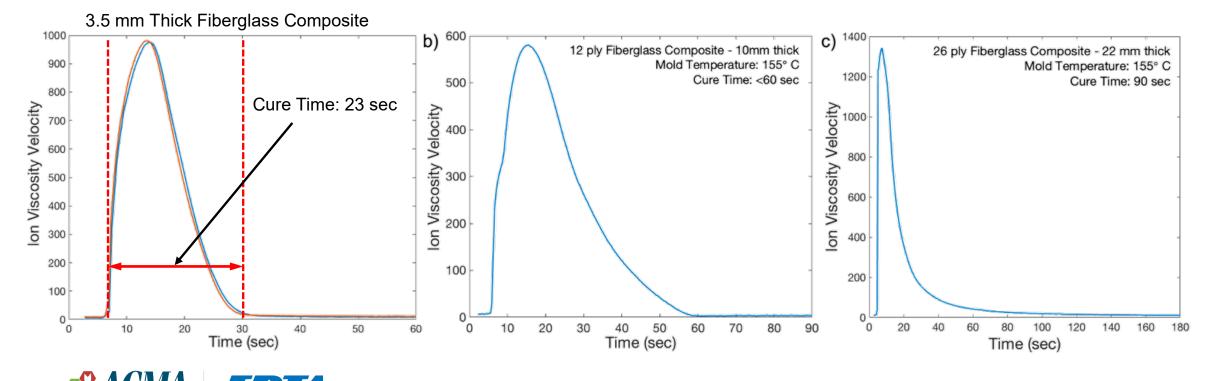

• Excellent resistance to solvents and shows no wet Tg reduction

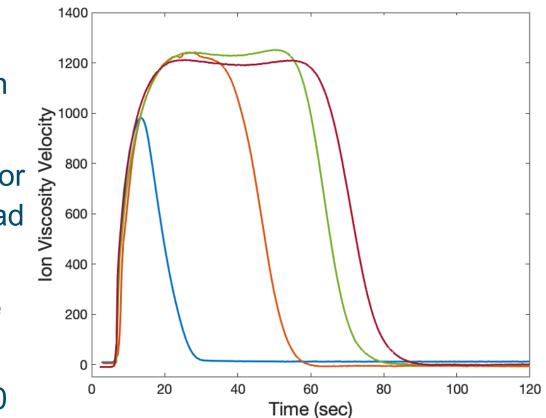
High Strength and Strain to Failure

- High flexural strength and compressive strength with high strain to failure
 - Compressive strain to failure ~9%
 - Flexural strain to failure ~5%



High Glass Transition Temperature

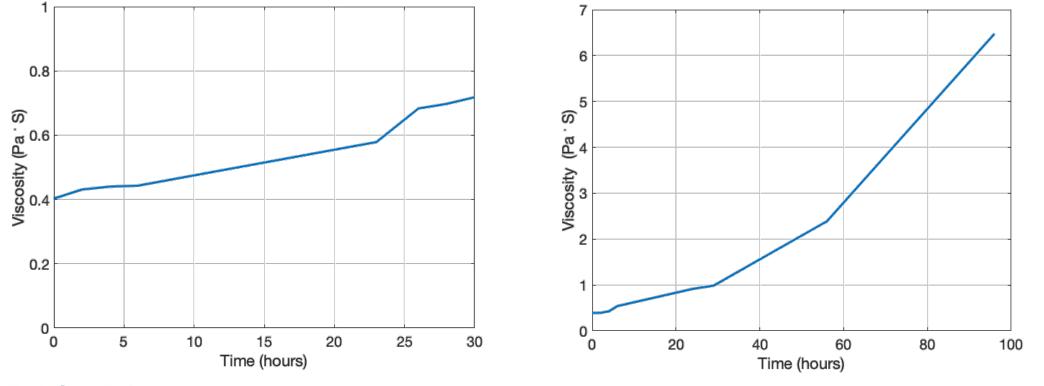

- Dynamic mechanical analysis (DMA) used to evaluate the glass transition temperature of the polymer
- Following post cure the polymers exhibit high glass transition temperature of 707° F (Tg = 375° C)
- Resin post cure can be observed in the DMA curve
- Tg in the range of polyimides yet rapid cure allows high rate pultrusion


Controlled Reactivity

- Trimer demonstrated 3.5 mm thick composites could be cured in ~25 seconds with a 30 second cycle time
- 10mm thick composites were cured in under 60sec and 22mm thick composites were cured in under 120 sec with an unheated resin

Cure Kinetics

- Trimer wet compression molded 3.5 mm thick fiberglass panels in 30 seconds
- Full cycle time of 30 sec. could be achieved which exceeds the DOE's 2050 goal of <1 minute
- Many currently used molding tools are designed for slower curing resins where low cycle time may lead to polymerization prior to full infusion of the resin
- Trimer has developed the chemistry to enable the cure rate to be tailored for a particular application
- Increased the cure time of a 3.5mm panel from 30 sec to 90 sec



Rapid Cure with Extended Pot Life

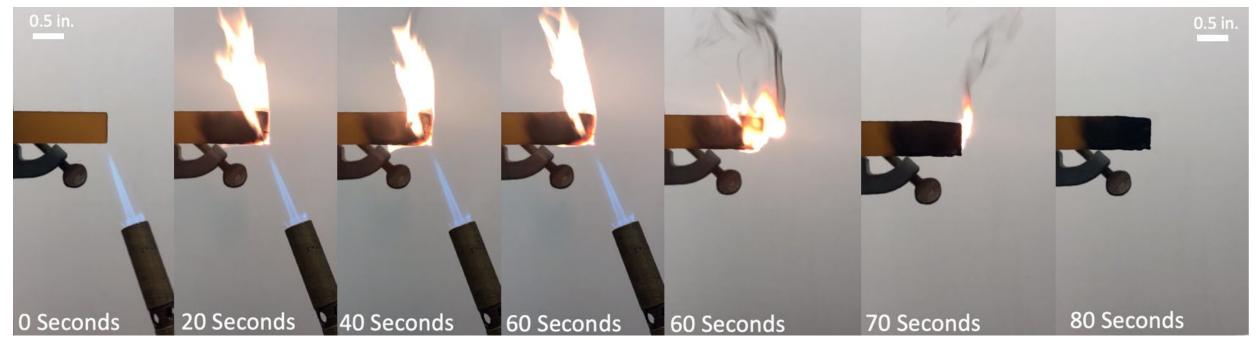
- Trimer has developed latent systems which can be bath pultruded
- Latency can extend from hours to days with high pull speed still obtainable
- New resin system is latent but still allows the use of highest catalyst reactivity

North American Pultrusion Conference 2023

High Rate Pultrusion

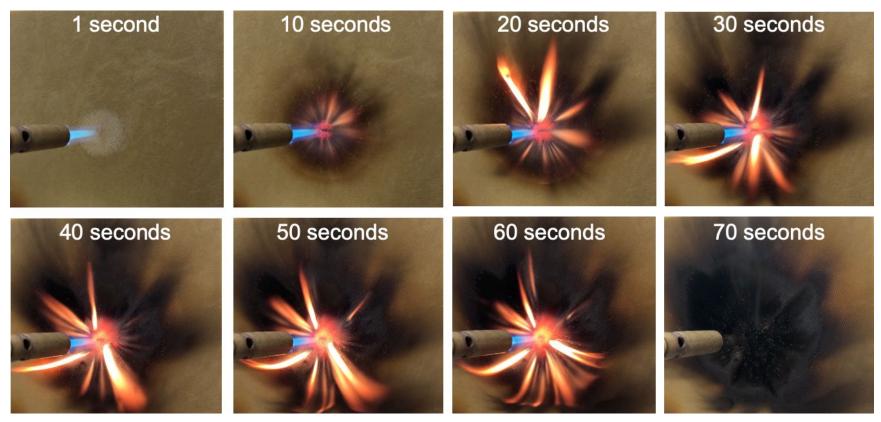
- Trimer has used both direct die injection and resin bath techniques
- Demonstrated the ability to run continuously at over 120 in/min
- High thermal stability and allows pultrusion with a higher die temperature profile
- Die typically run at 390° F although die temperature can be varied greatly

Trimer Resin Pultrusion Properties

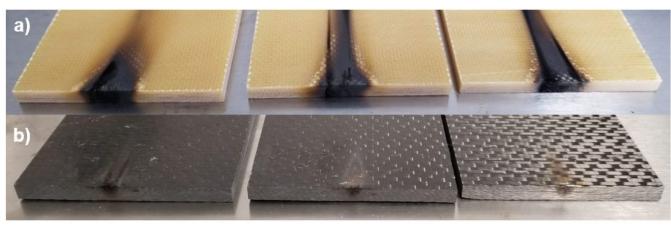

- Trimer's resin system generates excellent mechanical, thermal and fire properties
- Combination of properties not typically found in a pultrusion resin
- Resin is non-halogenated and contains no volatile components such as styrene
- Cure does not generate volatiles that create high void content
- Composite exhibit excellent
 adhesion to fibers

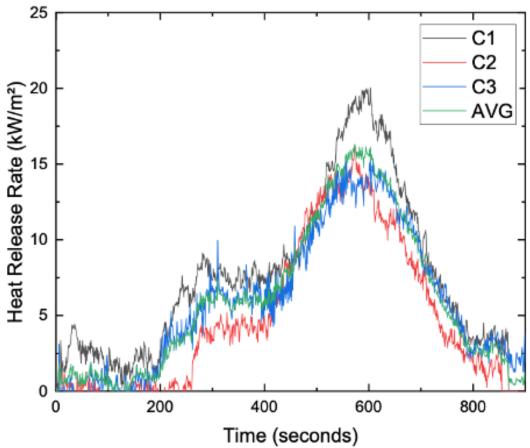
Trimer Pultrusion Resin
55-57 GPa
1.7-1.8 GPa
16-17 GPa
75-100 MPa
1.1 GPa MPa
58.4 GPa
60-80 MPa
17 MPa
V0
Class A
Pass

Fire Resistant Composites


- Trimer tested the neat polymer for horizontal flame spread (ASTM D635) and passed the horizontal burning test after 30 sec exposure to flame
- To further demonstrate the polymer's nonflammable properties the polymer was subjected to a 60 second burn time under more intense flux than the ASTM D635 standard

Fire Resistant Composites


• Fiberglass reinforced composite panel (3mm thick) exposed to MAPP Gas torch for 60 sec then allowed to self extinguish



Fire Resistance

- Fiberglass panels tested at UDRI and SGS in accordance with ASTM E-1354/ISO 5660
- Cone calorimeter with 50 kW/m²
- Results showed a peak heat release rate of 17 kW/m²
- Time to ignition was measured at 155 sec.
- Average heat release rate was 17 kW/m²

OSU Heat Release Testing

- Trimer has worked to demonstrate fire resistance for transportation
 applications
- Trimer's resin systems can greatly exceed FAR 25.853 for Aircraft Interiors
- Resin provides very low heat release with a low smoke density while providing high strength and stiffness

TEST REQUIREMENTS (MAXIMUM AVERAGE)			TOTAL (2 MINUTE) HEAT RELEASE	MAXIMUM (PEAK) HEAT RELEASE	T I	TEST REQUIREMENTS (MAXIMUM AVERAGE)			MAXIMUM (PEAK) SMOKE DENSITY			
Per T				65 kW Min./m ²	65 kW/m ²	Per 1	Per Title 14 CFR/JAR/CS Part 25 Appendix F Part V (b) [Amdt. 25-66] & ABD0031 (issue G, August 2014)			200 Ds		
Sample	Total	Peak	Time			Comments		Sample	Maximum Smoke Ds	Time		Comments
1	11.9	21.4	62	SAGGING: DELAMINATION: OTHER OBSERVATIONS:	NONE NONE NONE NONE			1	4.8	235	MELTING: NONE SAGGING: NONE DELAMINATION: NONE OTHER OBSERVATIONS: NONE OTHER COMMENTS: NONE MELTING: NONE	
2	21.4	32.3	158	MELTING: SAGGING: DELAMINATION: OTHER OBSERVATIONS:	NONE NONE NONE NONE NONE			2	3.9	236	MELTING: NONE SAGGING: NONE DELAMINATION: NONE OTHER OBSERVATIONS: NONE OTHER COMMENTS: NONE MELTING: NONE	
3	15.3	31.6	135	MELTING: SAGGING: DELAMINATION: OTHER OBSERVATIONS:	NONE NONE NONE NONE NONE NONE			3	6.0	240	OTHER OBSERVATIONS: NONE OTHER OBSERVATIONS: NONE OTHER COMMENTS: NONE	
Average	16.2	28.4	118	UTHER COMMENTS.	NUNE			Average	4.9	237		
Pass/Fail	PASS	PASS						Pass/Fail	PASS			

OSU Heat Release

Smoke Density

Vertical Flame Spread

- Vertical flame spread evaluated for 0.5 mm and 6mm thick carbon fiber panels
- Flame spread is typically larger in thinner specimens
- Results easily meet FAR
 25.853 for Aircraft Interiors
- Flame spread under ASTM E162 testing shows a flame spread of only 1.1 in.

Sample	Ignition Time (sec)	Flame Time (sec)	Drip Flame Time (sec)	Burn Length (inch)
1	60.0	0.0	0.0 No Drips	0.0
2	60.0	0.0	0.0 No Drips	0.0
3	60.0	0.0	0.0 No Drips	0.0
	Average:	0.0	0.0	0.0
	Result:	PASS	PASS	PASS

6 mm Thick Specimen

0.5 mm Thick Specimen

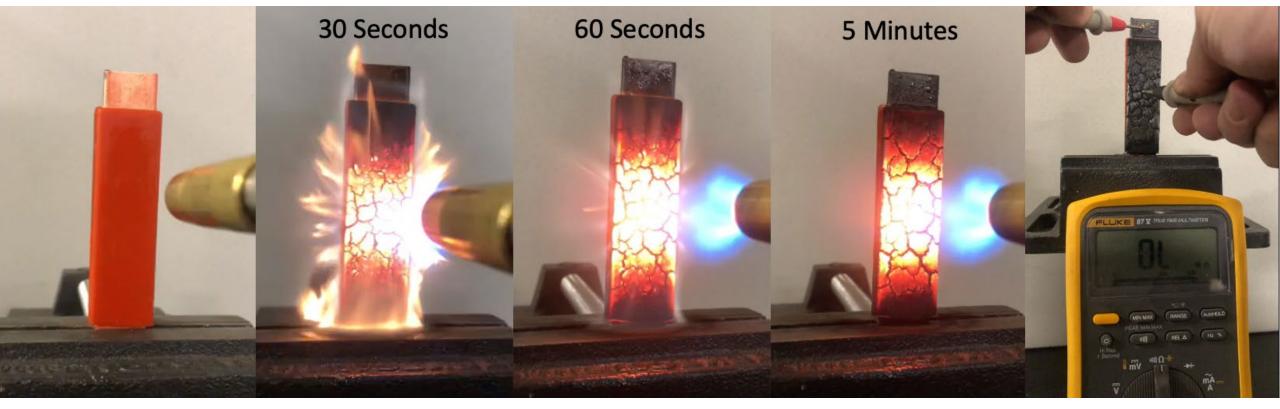
Sample	Ignition Time (sec)	Flame Time (sec)	Drip Flame Time (sec)	Burn Length (inch)
1	60.0	0.0	0.0 No Drips	0.7
2	60.0	0.0	0.0 No Drips	0.6
3	60.0	0.0	0.0 No Drips	0.6
	Average:	0.0	0.0	0.6
	Result:	PASS	PASS	PASS

Smoke Density

- Trimer's resin generates very low smoke density
- Meets ASTM E662 for smoke density without intumescent coating
- Have received an ASTM E84 Class A rating with a FSI of 15 and SDI of 250
- E84 testing of panel with Technofire intumescent veil showed equivalent FSI but nearly double SDI

	Flamin	g Mode	Non-Flaming Mode		
	90 Second Maximum	4 Minute Maximum	90 Second Maximum	4 Minute Maximum	
Specimen	Specific Optical	Specific Optical	Specific Optical	Specific Optical	
-	Smoke Density	Smoke Density	Smoke Density	Smoke Density	
Α	0	17.0	0	0	
В	0	5	0	0	

SMP 800 Testing


- Trimer's resin is nonhalogenated and requires no additives for fire resistance
- Minimizes toxic fumes during combustion processes
- Resin system is well suited for aircraft interiors, mass transit and marine applications

Desulter	Toxic Ga	is Generation	
Results:	Flaming Mode	Non-Flaming Mode	Specified Maximum
Carbon Monoxide (CO ppm)			
At 1.5 Minutes	LT 1	LT 1	-
At 4.0 Minutes	17	LT 1	-
At Maximum	398	LT 1	3500
Carbon Dioxide (CO2 ppm)			
At 1.5 Minutes	114	LT 10	-
At 4.0 Minutes	1,033	LT 10	-
At Maximum	10,952	804	90,000
Nitrogen Oxides (as NO@ ppm)	LT 1	22	100
Sulfur Dioxide (SO2 ppm)	LT 1	LT 1	100
Hydrogen Chloride (HCL ppm)	20	12	500
Hydrogen Bromide (HBr ppm)	LT 1	LT1	100
Hydrogen Fluoride (HF ppm)	LT 2	LT2	100
Hydrogen Cyanide (HCN ppm)	15	1	100

Fire Resistant Electrical Insulators

• Have demonstrated pigmented coating for battery bus bars that can resist fire and maintain insulation

Trimer's Value Proposition

- Trimer has developed a new IMR which can enable excellent surface with fast pull rate
 - Have developed one-part IMR/Catalyst package to simplify meter mixing
- Resin cost of ~ \$5/lb with IMR and catalyst at volume
- Trimer's resin can enable 3-4 times fast pull speed than phenolic
- Trimer's resin has no VOC and does not exhibit exothermic run away
 - Recent air sampling has shown the resin meets permissible exposure limits without ventilation
- Have developed new resin system which can be bath pultruded without reducing resin reactivity
- Trimer has scaled our manufacturing process with near term production for automotive, industrial and infrastructure applications

Questions?

hsodano@trimer-tech.com

www.trimer-tech.com

