Cutting and Stacking Cell

for Automated High Volume Manufacturing of Dry Fiber Fabric Stacks

Schmidt & Heinzmann: M. Ochs

Speakers

Michael Ochs

Executive Vice
President and Director
Sales & Marketing

based in Germany m.ochs@schmidt-heinzmann.de

Schmidt& Heinzmann

COMPOSITE EQUIPMENT & MACHINERY

Product and Background

Aerospace part:

Legacy: Prepreg Honeycomb sandwich

- Hand Layup Process
- Low Cost Country Build
- Autoclave Manufacturing Process

- Increased Automation
- Out of Autoclave Manufacturing

Now: One Shot Monolithic RTM

A Simple Task!

Schmidt & Heinzmann's task: realize 1st process step - from fabric to 2D stack

Input: Fiber Fabric

Cutting Table

Stacking Robot

Output: 2D Stack

A Simple Task?

- ~ On average 8 plies per stack
- ~ Each ply needs to be positioned and stabilized
- ~ Stack needs to be labelled for traceability
- ~9 stacks per component
- ~ 10 components per shipset

Strategies

Materiale spoil at a time

Stacking Table

= A Axis CMC

Shachinhaerallerized

stacking of up to 16

at a rift

Au Schmateling

~ Fully autonomous, without manual intervention

Type IV

Strategies

Controlled and coordinated by one PLC

Subtable 1A **AutoCut Material Handling** ~ Matrix EOAT with more than 100 Type I individual zones ~ Combined with 7 axis industrial robot Type II ~ Best-in-class positioning accuracy ~ Best-in-class Type III Orientation accuracy Subtable 4A **Type IV** Subtable 4B • Table 4 Subtable 4C Subtable 40

Production Planning Algorithm

Prioritization

Length of AutoCut working area

1st feed **b**ft feed of materialmaterial

2nd feed of material

2nd feet of material

Prioritization

- Stack 1
- Stack 2
- Stack 3
- Stack 4

Manipoulitelibif this solution is manufacturable?

Can you tell if this psichultigion is optimal in terms of efficiency?

- Prioritization is key to JIT manufacturipgcarallow cycle time
- But Prioritization is only one part of the problem...

Path Planning

Dictated by the end-user

Target Position

Constrained by placing table

Grippen Position

- Constrained by optimal alignment with gripper elements
- Constrained by ply size

Pick-cupp Position

- Dictated by nesting
- In real time AutoCut

For each and every prody
Other machine

Without crashingents

The Way to Go: User Interface

The Way to Go: User Interface

Contact

Schmidt& Heinzmann

COMPOSITE EQUIPMENT & MACHINERY

Schmidt & Heinzmann North America

Chandler, Arizona

+ 1 470-489-7500

c.fais@schmidt-heinzmann.com

Schmidt & Heinzmann Germany

Bruchsal, Baden-Württemberg

+ 49 (7251) 38 58-0

m.ochs@schmidt-heinzmann.de

Thank You

For Your Attention

