Investigation of Pultrusion Die Dynamics using a Novel Rotating Core Method

Sathis Kumar Selvarayan, Markus Milwich, Götz T. Gresser

German Institutes for Textile and Fiber Research Denkendorf (DITF)

Pultrusion Conference 2021

German Institutes of Textile and Fiber Research

EUROPE'S LARGEST TEXTILE RESEARCH CENTER

300 employees, 3 research facilities, 1 production company

RESEARCH FIELDS

Outline

- 1. Background and motivation
- 2. State-of-the-art methodologies
- 3. Novel rotating core method
- 4. Parametric investigations
- 5. Validation of rotating core method
- 6. Summary

Composites for high performance applications

[1] 5M s.r.o https://www.5m.cz/en/products/kompozitni-profily [Accessed: 30.11.2020]

[2] Röchling SE & Co. KG https://www.roechling-industrial.com/industries/renewable-energies/wind-energy/materials-for-wind-turbine-blades/spar-caps-for-wind-turbines [Accessed: 30.11.2020]

CARDINA Automa Exercises Manarenaes Autocons

S. K. Selvarayan

Pultrusion Conference 2021

2

Pultrusion process

Influencing parameters

Reinforcement type Fibre volume fraction Matrix system **Functional additives Process additives** Temperature profile Process Pulling speed Profile geometry

Material

S. K. Selvarayan

Motivation

Incompatible parameter selection:

- Under cured profile or degraded matrix
- Mould sticking and fouling
- Tensile failure of profile \rightarrow uneconomical

Extensive pultrusion trials required for:

- Process parameter determination
- Material selection (e.g. Internal Mould Release)
- Die (tool/mould) design

Understanding <u>die dynamics</u> is vital

No standardised investigative methods available

Die dynamics in pultrusion

Pulling force a measure of die dynamics

- Reinforcement tension Guide element friction Impregnation unit friction
 - Compaction Viscous drag Thermal expansion Adhesion Friction

Within the die

H.L.J. Price, Curing and Flow of Thermosetting Resins for Composite Material Pultrusion, Old Dominion University, 1979.

Pultrusion Conference 2021

State-of-the-art methods to quantify the resistive forces

Research question

 $F_{die} \rightarrow$ Forces that arise in the straight segment within the pultrusion die

$$\vec{F}_{pull} = \vec{F}_{coll} + \vec{F}_{comp} + \vec{F}_{vis} + \vec{F}_{frid}$$

How to quantify the forces that arise along the length of a pultrusion die and hence quantify the die dynamics of a pultrusion process?

Research gaps to be addressed:

- Comprehensive and continuous force data
- Effectiveness of additives (e.g. IMR)
- Pre-determine process variables

Approach

Novel rotating core method

Transformation of linear system to rotational system

Novel rotating core method

Patent - DE102018127540

Die Dynamics Simulator (DDS)

Measurement process steps

Winding preparation

- Fibre volume fraction
- Resin formulation

Filament winding

- Roving tension
- Winding angle

Torque measurement preparation

- Die temperature
- Rotational speed

Torque Measurement

 Measurement of torque, temperature and speed

Post-measurement

- Subjective inferences
- Through-thickness flow
- Resin layer thickness
- Torque evolution
- Die dynamics

Patent - DE102018127540

Filament winding parameters

Reinforcement architecture

- Fibre orientation
- Fibre distribution

Parametric investigations on DDS

Process		Geometry		Material			
Die temperature (T)		Die radius (R)		Fibre volume fraction (FV) IMR concentration (IMR)		Unidirectional roving E-glass fibres Fineness: 600 tex	
						Epoxy system	
т	V	R	н	FV	IMR	EPIKOTE [™] MGS [®] LR285	
[°C]	[mm min ⁻¹]	[mm]	[mm]	[-]	[phr]	FPIKURF [™] MGS [®] I H286	
120	100	11	1	0.56	0.5		
140	200	5.5	2	0.61	1.5	Internal Mould Release	
	300				3.0	PAT [®] IMR System	

Effect of Internal mould release on torque

Die dynamics model

Parametric investigations + Rheokinetics of the resin formulation

Zone I: Compaction Zone II: **Viscosity reduction** Zone III: Curing onset, Stable/Unstable network Zone IV: Gelation, Thermal expansion, Adhesion \rightarrow IMR effectiveness Zone V: **Seperation or Mould sticking**

Zone VI: Friction

Pulling force measurement

Calculation of pulling force equivalence from torque

Comparison of measured forces

i.

	Pultrusion		DDS		
Sample set	Mean pulling force F _{pull} [N]	Std. Dev [N]	Measured mean force F _{cdie} [N]	Std. Dev [N]	Mean deviation [%]
T140-V300-FV0.61-IMR3.0	162.21	4.27	158.15	5.31	-2.50
T140-V300-FV0.61-IMR0.5	192.59	4.72	194.94	6.58	1.22
T140-V100-FV0.61-IMR3.0	137.38	6.52	134.86	4.04	-1.83
T140-V100-FV0.61-IMR0.5	335.5	7.09	318.12	7.04	-5.89
T120-V100-FV0.61-IMR3.0	165.23	5.99	152.19	18.45	-7.89
T120-V300-FV0.61-IMR3.0	97.08	5.28	94.18	4.72	-2.99
T120-V300-FV0.61-IMR0.5	95.49	2.99	86.33	5.56	-9.16
T120-V300-FV0.56-IMR0.5	85.47	7.97	52.7	18.4	-38.34
T120-V300-FV0.56-IMR3.0	87.11	6.59	39.67	14.29	-54.46

Advantages of rotational core method

- Enable to create database for process optimisations
- Economically beneficial compared to full scale process
- Aids die design, tribological properties analysis of die materials
- Composite samples produced in DDS can be directly used for further testing
- Application of DDS can be extended to the batch processes such as RTM → Demoulding characteristics

© Fibre & Foam GmbH

Summary

- Our new approach empirically simulates the pultrusion die dynamics
- Proved feasibility to quantify the individual components ($\vec{F}_{vis} \& \vec{F}_{fric}$) of the resistive forces in the die
- Investigated effect of process and material parameters on the resistive forces and established die dynamics model
- Successfully validated the rotating core method using pultrusion experiments

Investigation of Pultrusion Die Dynamics using a Novel Rotating Core Method

Sathis Kumar Selvarayan

sathiskumar.selvarayan@ditf.de

German Institutes for Textile and Fiber Research Denkendorf (DITF)

Pultrusion Conference 2021

Torque measurement on DDS

26

Torque evolution behaviour

$$\varphi_{fa} = 0.61$$
 $\varphi_{fa} = 0.56$