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Advanced Manufacturing Technologies with Automation & Artificial Intelligence
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Background

* Productivity and quality benefits from automated fiber placement (AFP) are becoming more attractive for
complex composite components that historically were only possible to build by hand.

» Although AFP has significantly improved the production rates/quality, there are still challenges since the
process requires integration of multiple disciplines such as robotics, nondestructive inspection (NDI), and
process modeling.

e Quality assurance through inspections and process controls are essential to ensure that material is laid up
and processed according to specification with appropriate consolidation and with no process-induced
defects.

* This manual inspection process that can consume 20-70 percent of the production time diminishes the benefits of automation
to improve the production rate.

* |n addition, manual inspection processes have deficiencies such as operator/training/environment dependency and
inconsistencies.

Main goal of this research is to develop and implement a

machine-learning algorithm (MLA) for an in-process automated
manufacturing inspection system (IAMIS) for reducing defects in
automated fiber placement process




Digital Manufacturing Twin (DMT)

(

= | WICHITA STATE L j
v ”"" UNIVERSITY - -
A 4 2 angw e ‘CC’ ECH
Modeling for Affordable e —
Sustainable Composite VCRIC ’
(MASC)

Lifecycle
Management

| 4

Increase Rate, Improve Quality, and Reduce Cost

» Detecting manufacturing defects that are above certification basis through
machine-learning algorithms for reducing time-consuming manual inspection
processes that require interrupting the manufacturing process, and

» Using artificial intelligence for identifying manufacturing anomalies for
optimizing process parameters (ex, lay down speed, heat input, compaction
force, steering radii, etc.) in order to reduce manufacturing defects.
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Demonstration of system capability for DMT

* Demonstration of EoD interrogation

* DOE for PoD on 3D part

* Demonstration of Al algorithm for process
optimization

Manufacturing Environment

Laboratory Environment

* Integration of inspection system and
software to robot controls

* Development of ML algorithm for
interpreting AFP defects

Manual inspections for detecting
AFP defects * Development of Al algorithm for

providing feedback to robot controls

Software for converting point
cloud into a defect map
DOE for PoD on flat panels



Machine Learning Model
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In-Process Inspections
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* Integrated machine learning database for
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ligh-Fidelity Analysis of AFP

Exp. Strength Knockdowns (for
3 material systems)

- 1Gap ~1-10%
- 3Gap ~14-18%
\° OHT  ~40-4d%

FEA Strength Knockdown (for
3 material systems)

 1Gap ~1-3%
+ 3Gap ~1-12%
« OHT ~ 39 - 42%
U ’ J

* Static strength predictions
compared well with experiments

* T1100G/3960 and T800/3900-2 ]
displayed best correlation for
strength data (within 8%) ‘

* All models correlated very well for
stress strain responses

*  “Resin-block” approach successful;
axial strain along centerline length
& width matched that of DIC/exp.
data 11



Database Ill (Analysis) - Automated Repair
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AFP Gap Repair
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Gap-Repair Strength Results
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(. Strength predictions for HTS40/977-2 material showed better correlation;
* % Difference between for FEA vs Exp. less than 12%

* A general trend of over prediction was seen in the T650/5320-1 material for
\ baseline specimens; Results still within 16%

» Displayed a consistent trend of under prediction across the configurations
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TENSION TEST RESULTS:

* UNT-Repair Strength knockdown:

* T650/5320-1 Increase of (+3%)

» HTS40/977-2  Knockdown of (-7%)

* OHT-Repair configuration for both materials had knockdown in

the range of (-1 to -2)%

COMPRESSION TEST RESULTS:

» HTS40/977-2 displayed a consistent increase in strength for
repair specimens (ranging from +6 to +8%)

* T1100G/3960 saw knockdown up to (-6%)
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Summary

* The proposed IAMIS integrated robot controls enhanced with ML and Al
framework improves manufacturing rate and quality, while reducing overall
manufacturing cost, impacting the following key performance parameters
(KPPs) associated with AFP:

* Versatility — Human error associated with various levels of operator experience will
be eliminated. In addition, MLA incorporated into the system will reduce recurring
defects (improve quality) in part and reduce scrap rate (reduce overall cost).

* Time to Deploy — IAMIS eliminates the need for costly and time-consuming
secondary inspection processes that cause more than 20 percent of the
manufacturing time (increase manufacturing rate).

* Total Cost of Ownership — Lightweight low-cost inspection system can be
incorporated to an AFP system with MLA to manufacturer quality parts with low
scrap rate at a higher efficiency. Elimination of secondary inspection step not only
save time, but also the cost of equipment, programming, and operators.
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