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Manufacturing Engineering Education

• Future
• Create a pipeline of “industry-ready” future 

engineers for advanced manufacturing processes
• Machine learning and artificial intelligence
• Advanced materials and processes

• Present
• Work with industry solving current manufacturing 

problems
• Exposure to industry challenges

• Past
• Develop workforce training programs for advanced 

manufacturing technologies
• Create new job opportunities for current workforce

Develop a multi-disciplinary manufacturing environment and an engineering education program to prepare engineers and 
educators for the Factory of the Future and to aid current workforce in seamlessly adapting to advancements in the workplace. 
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Background

• Productivity and quality benefits from automated fiber placement (AFP) are becoming more attractive for 
complex composite components that historically were only possible to build by hand. 

• Although AFP has significantly improved the production rates/quality, there are still challenges since the 
process requires integration of multiple disciplines such as robotics, nondestructive inspection (NDI), and 
process modeling. 

• Quality assurance through inspections and process controls are essential to ensure that material is laid up 
and processed according to specification with appropriate consolidation and with no process-induced 
defects. 

• This manual inspection process that can consume 20-70 percent of the production time diminishes the benefits of automation 
to improve the production rate.  

• In addition, manual inspection processes have deficiencies such as operator/training/environment dependency and 
inconsistencies.  

Main goal of this research is to develop and implement a 
machine-learning algorithm (MLA) for an in-process automated 
manufacturing inspection system (IAMIS) for reducing defects in 
automated fiber placement process



Digital Manufacturing Twin (DMT) 

Lifecycle 
Management

In-Process 
Inspections

Automated 
Manufacturing

Manufacturing 
Simulations

Design

Increase Rate, Improve Quality, and Reduce Cost

• Detecting manufacturing defects that are above certification basis through 

machine-learning algorithms for reducing time-consuming manual inspection 

processes that require interrupting the manufacturing process, and

• Using artificial intelligence for identifying manufacturing anomalies for 

optimizing process parameters (ex, lay down speed, heat input, compaction 

force, steering radii, etc.) in order to reduce manufacturing defects. 
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Digital Manufacturing Twin 

(DMT)



Road Map for DMT



Machine Learning Model

• Use Existing Machine Learning 
Architectures and Frameworks.

• Develop a methodology to 
generate large amounts of training 
data.

• Develop optimal parameters for 
machine learning model training.

• Train ML models to categorize 
critical defects/features

ML Model

In-process 
Inspection 

Data

Categorization of
defects/features 

based on criticality  

Inspection 
Data Types 

(Geometrical,
Optical, Thermal, etc.)

Training of ML 
Models based on 

the inspection data 
type

Generation of Training 
Data

Analysis of 
Defects/Features

Development of Defect 
Models

Categorization of critical and non-critical defects and 
features
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• Custom feature-recognition algorithm

• Integrated machine learning database for 
advanced recognition and analysis 

Laser Profilometry

In-Process Inspections
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Database I (EoD) - Strength Knockdowns for 
Margin of Safety

• 1 AFP Gap Tensile Strength Knockdown ~ 0 - 4%

• 3 AFP Gap Tensile Strength Knockdown ~ 5 - 14%

AFP Manufactured 
Strength Knockdown 

Hand Layup
Strength Knockdown 

Exp. COV Exp. COV Exp. COV Exp. COV

UNT 1 gap -0.30% 0.80% -2.60% 3.40% -3.93% 0.48% -10.00% 6.00%

UNT 3 gap -14.10% 1.50% -17.70% 5.40% -4.97% 3.19% -18.90% 3.40%

OHT -42.10% 2.10% -44.30% 1.10% -50.91% 3.30% -53.30% 3.10%

Normalized Strength 

Knockdown  [%]

T800/3900-2T1100G/3960 T650/5320-1HTS40/977-2

Largest Knockdown
Smallest Knockdown* Data from only AFP manufactured materials/panels

Hand LayupAFP Layup
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Database I (EoD) - High-Fidelity Analysis of AFP 
Features 

FEA Strength Knockdown (for 

3 material systems)

• 1Gap ~ 1 – 3%

• 3Gap ~ 1 – 12%

• OHT ~ 39 – 42% 

Exp. Strength Knockdowns (for 

3 material systems)

• 1Gap ~ 1 – 10%

• 3Gap ~ 14 – 18%

• OHT ~ 40 – 44% 

%diff ~ 3 - 8%

T1100G/3960

%diff ~ 3 - 7%

T800/3900-2

%diff ~ 1 - 14%

T650/5320-1

• Static strength predictions 
compared well with experiments

• T1100G/3960 and T800/3900-2 
displayed best correlation for 
strength data (within 8%)

• All models correlated very well for 
stress strain responses

• “Resin-block” approach successful; 
axial strain along centerline length 
& width matched that of DIC/exp. 
data

Due to discrete jump in 

material properties in FE gap 

model

Smooth transition 

in experimental 

response

FEAExp.

3 Gap Configuration
Axial Strain Comparison

Axial strain comparison for 3Gap configuration – DIC vs FEA
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Database III (Analysis) - Automated Repair

Gap-Repair: Tension

UNT_GRep

[45/90/-45/0]2s

L = 355.6 mm

W = 76.2 mm

Wg = 6.35 mm

θg = -45°

OHT_GRep

D = 6.35 mm

Gap-Repair: Compression

UNC_GRep

[45/90/-45/0]2s

L = 304.8 mm 

W = 76.2 mm

Wg = 6.35 mm

θg = -45°

OHC_GRep

D = 6.35 mm

UNC SetupOHT Setup

Anti-buckling fixture

Missing Tow 
in Ply level #7 
(-45°)

Repair Tow in 
Ply level #8

Gap in -45° to induce out-of-plane waviness in 0° Ply 



AFP Gap Repair - Photomicrographs

0° Ply

0° Ply

-45° Tow

-45° Ply

-45° Gap Ply 

Initial gap loc.Initial gap loc.

-45° Gap Ply 

0° Fibers

-45° Repair Tow

Repair region  - local transition zone:

• Gap/Missing tow in -45° ply 
induces adjacent 0° ply to contour 
into the vacant region.

• 0° creates out of plane wrinkle.

• Wrinkle stabilized by the repair 
tow (-45°) placed on top of 0° ply

• Smooth transition seen within 
repair  distribution region with 
limited resin rich regions.

• Local Vf generally maintained in 
gap region



Gap-Repair Strength Results

Exp. - COMPRESSION CONFIGURATION

• Strength predictions for HTS40/977-2 material showed better correlation; 

• % Difference between for FEA vs Exp. less than 12%

• Displayed a consistent trend of under prediction across the configurations

• A general trend of over prediction was seen in the T650/5320-1 material for 

baseline specimens; Results still within 16%

TENSION TEST RESULTS:
• UNT-Repair Strength knockdown:

• T650/5320-1 Increase of (+3%)
• HTS40/977-2 Knockdown of (-7%)

• OHT-Repair configuration for both materials had knockdown in 
the range of (-1 to -2)%

COMPRESSION TEST RESULTS:
• HTS40/977-2 displayed a consistent increase in strength for 

repair specimens (ranging from +6 to +8%)
• T1100G/3960 saw knockdown up to (-6%)

Exp. vs FEA - TENSIONS CONFIGURATION
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Summary

• The proposed IAMIS integrated robot controls enhanced with ML and AI 
framework improves manufacturing rate and quality, while reducing overall 
manufacturing cost, impacting the following key performance parameters 
(KPPs) associated with AFP:
• Versatility – Human error associated with various levels of operator experience will 

be eliminated. In addition, MLA incorporated into the system will reduce recurring 
defects (improve quality) in part and reduce scrap rate (reduce overall cost).

• Time to Deploy – IAMIS eliminates the need for costly and time-consuming 
secondary inspection processes that cause more than 20 percent of the 
manufacturing time (increase manufacturing rate).  

• Total Cost of Ownership – Lightweight low-cost inspection system can be 
incorporated to an AFP system with MLA to manufacturer quality parts with low 
scrap rate at a higher efficiency. Elimination of secondary inspection step not only 
save time, but also the cost of equipment, programming, and operators. 
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