Advanced Dynamic Simulation Capabilities in Pultrusion for Automotive Applications

Elias Shakour Ph.D., Praphulla Chandra ,Ricardo Mercado, Chris Korson

BASF Corporation

Pultrusion 2021

Process Description

Polyurethane Systems Used for the Study

- Elastocoat[®] 74850:
 - Good wetout
 - Good mechanical performance
 - Line speed 1.5 m/min
- Elastocoat® 74830
 - Low viscosity
 - Suitable for carbon fiber
 - Low pull force
 - Good mechanical performance
 - Line speed 2.5 m/min
- Elastocoat[®] Hi-Tg
 - High tg up to 200C
 - Good mechanical performance
 - Line speed 1.5 m/min

Why Offering Pultrusion - Performance

- Pultrusion strength is comparable to Steel grades (fiber direction)
- Pultrusion elastic modulus is comparable to Magnesium

All Roving Architecture

Tensile Test

Problem Statement

- Post-Impact deformation needs to be accounted for full performance evaluation
- Post-Impact need to be predicted using Finite Element Analysis (FEA)
- Need to build a material card for post failure

Development Process of This Study

- Select PU for this development
- Identified four types of fiber architecture
- Developed two types of profiles:
 - 20cm flat die, with 2.2 mm thickness for coupon testing
 - Close box die with a mandrel for part demonstration testing
- Ran battery of tests to identify the material properties
 - Static
 - Dynamic
- Built Computer Aided Engineering (CAE) material card
- Ran part-level tests
- Compared results with Finite Element Analysis (FEA) and new card model

Fiber Architecture (CT Scan Pictures)

BIAXIAL

HYBRID

UNI-AXIAL

- Arrangement of fibers, influence properties and processing
- Determines void content, fiber wetting, fiber distribution, dry area
- Opportunity to tailor the structural performance of the composite
- 1- and 2- dimensional fiber layout

Sample of Coupon Testing- Flexural Testing

All Roving has the highest modulus and the highest ultimate strength of all tested materials followed by Uniaxial, Biaxial and Hybrid

Dart Impact Performance

 The impact properties of a material represent its capacity to absorb and dissipate energy under impact or shock loading

Coupon testing- High Speed Tensile Test

Uniaxial Temp:23°C Orient:0° SR:0.1/s

Biaxial Temp:23°C Orient:0° SR:0.1/s

Hybrid Temp:23°C Orient:0° SR:0.1/s

11

Flexural impact tests on a part

- Impact energy 613 J
- Total mass impactor 35.7 kg
- Impact speed 5.9m/sec.
- ~1200fps

Impact Measurements- on a part

- Axial Crush Impact measurements
- ULTRATEST® for maximum accuracy

3Pt Bending Impact on part

-2348MA

How to Correlate test vs Simulation

Correlation of Static 3pt Bend Part

~2*AGNI*/

Correlation of Static 3pt Bend Part

-846WA

Correlation of Crash 3pt Bend specimen

Correlation of Crash 3pt Bend specimen

48A6NIA

Conclusions

- We were able to create a proprietary material card for the polyurethane system with high correlation accuracy
- The Material card captures well the post failure
- With the martial card we have the know how to optimize the design and predict crash behavior
 Next step to build new material card for the other polyurethane system

Thank you!

If you have any further question, please contact

Elias Ruda Shakour

elias.shakour@basf.com

Praphulla Chandra

praphulla.chandra@basf.com

Christopher Korson

christopher.korson@basf.com

Ricardo Mercado

ricardo.mercado@basf.com

Pultrusion 2021