

A VIRTUAL EVENT APRIL 29 - MAY 1, 2020

Baseline and Long-term Properties of Continuous Fiber Reinforced Thermoplastic Composites

Presented By: David Erb, B. Abdel-Magid, A. Moran, R. Lopez-Anido Senior Research & Development Program Manager Advanced Structures and Composites Center, University of Maine

Scope of the Project

- Researchers have indicated that the properties of CFRTP composites are comparable to those of reinforced thermoset composites.
- Target industries of this study are automotive and infrastructure, therefore CFRTP materials in the low to medium range in cost and properties are selected.
- Establish a database of baseline tensile, compression, flexure, shear, impact and thermo-mechanical properties of these materials for the target industries.
- Investigate the long-term viability of these materials in various applications environments.

Objectives

- Compare the baseline mechanical properties of the selected CFRTP with properties after exposure to UV, moisture, and thermal cycling.
- Use baseline properties in finite element analysis and design.
- Use the long-term properties after exposure in durability analysis and design.
- Determine fire resistance properties in terms of flame, smoke, and toxicity to be used in materials selection.
- Testing of long-term properties is still in progress and complete results are not available to present here today.
- Preliminary results of processing parameters, fabrication, and baseline data will be presented.

Outline

- Testing program
- Material Selection
- Matrix and fiber materials
- Determination of Processing Parameters
- Fabrication of Samples
- Baseline properties
- Summary and Concluding Remarks

4

TESTING

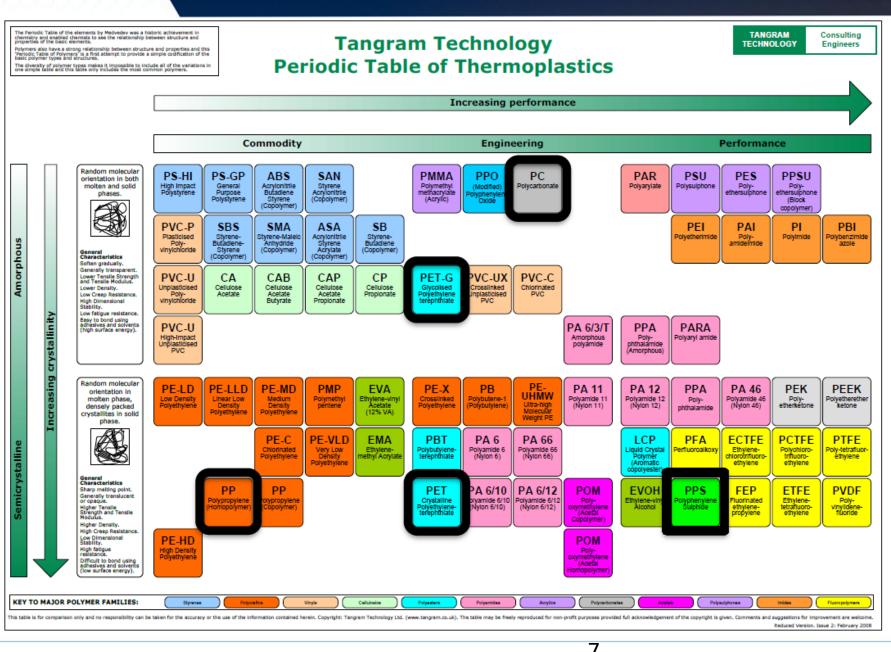
Sample	Tests	ASTM Standards	Post Environmental Conditioning	
Control	Tensile Properties (L, T Q)	ASTM 3039	Repeat	
	Flexure Properties (L, Q)	ASTM D790 or D6272	Repeat	
	In-Plane Shear ±45	ASTM D3518	Repeat	
	Short-Beam Shear (L, Q)	ASTM D2344	Repeat	
	Izod Impact (L, Q)	ASTM D256	Repeat	
	DMA for T _g and change in moduli	ASTM D7028		
Environmental	UV	ASTM G154		
Conditioning	Moisture	ASTM D5229		
	Thermal Cycling	?		
	Abrasion	ASTM D3702 ?		
FST	Flame	ASTM E162		
	Smoke	ASTM E1354		
	Toxicity	ASTM E1354		
Bonding	Lap Shear Test (composite and aluminum)	ASTM D5868/D7998	Repeat test	
Failure Analysis	SEM failure analysis of tested specimens.			

L = Longitudinal properties; T = Transverse Properties; Q = Quasi-isotropic layup

Note: All control tests will be repeated after samples are exposed to UV, moisture, and thermal cycling

Materials Selection

Based on:


- Light weight Thermoplastic composites materials
- Sound mechanical properties Continuously reinforced thermoplastics
- Moisture resistance minimum or no moisture absorption/damage
- UV resistance chemically stable matrix
- Thermal cycling good fiber/matrix interface
- FST fiber/matrix with good fire performance, safe and nontoxic smoke
- Cost Mid-range of engineered thermoplastics

THERMOPLASTIC COMPOSITES CONFERENCE 2020

Matrix Material Selection

PRESENTED BY Composites Manufacturing

Matrix Materials

Polymer	Structure	A/C	Chemical Stability	Upper Use Temp.	FST
PPS		Semi- Crystalline	Very Good	200 °C	Very Good
PET	$ \begin{array}{c} \begin{array}{c} O \\ C \end{array} \\ - O \\ \end{array} \\ - \begin{array}{c} O \\ C \end{array} \\ - O \\ \end{array} \\ - \begin{array}{c} O \\ C \end{array} \\ - O \\ \end{array} \\ \\ - O \\ \end{array} \\ \\ - O \\ \end{array} \\ - O \\ \end{array} \\ \\ \end{array} \\ = O \\ \end{array} \\ \\ \end{array} \\ = O \\ \end{array} \\ \\ \end{array} \\ = O \\ \\ \end{array} \\ \\ \end{array} \\ = O \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\$	Semi- Crystalline	Good	150 °C	Combustible, clean smoke
PC		Amorphous	Fair	135 °C	Good w/fire retardant
PETG		Amorphous	Good	150 °C	Good fire resistance
PP	- CH ₂ CH(CH ₃) $ n$	Semi- Crystalline	Fair	85 °C	Good w/fire retardant

Thermoplastic Tape Fiber/Matrix

Celanese Materials

CF/PPS; GF/PPS; GF/PET

PolyOne Materials

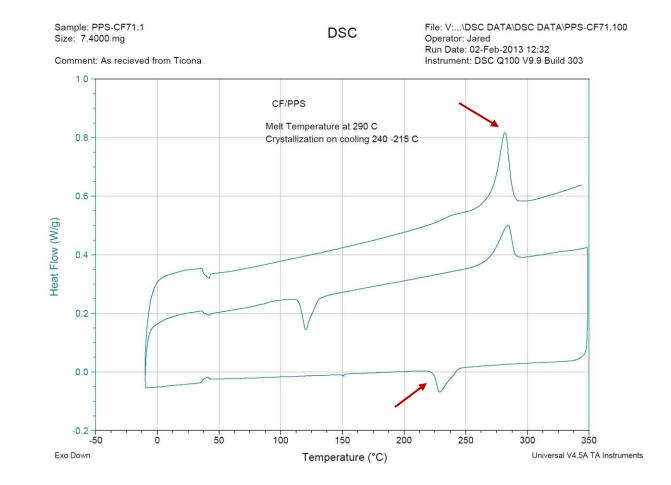
GF/PC; GF/PETG; GF/PP (FR)

Manufacturer's Properties

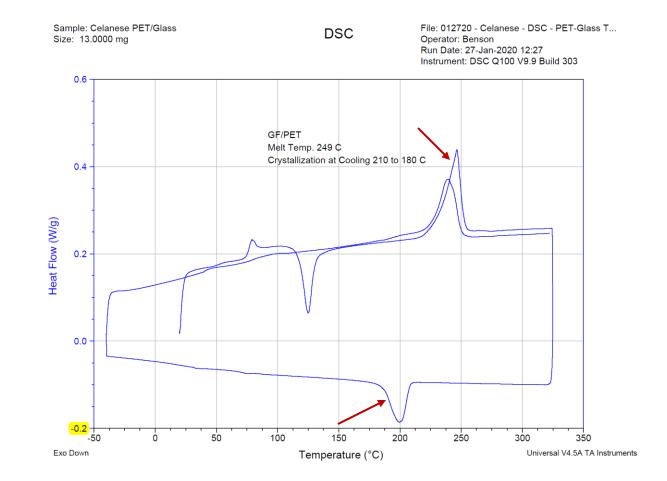
Material		Celanese		PolyOne			
Property	CF/PPS	GF/PPS	GF/PET	GF/PC*	GF/PETG	GF/PP*(FR)	
Fiber content wt.%	60	60	60	58	58	60	
Tensile Strength 0°(MPa)	2030	782	688	TBD	571	TBD	
Tensile Modulus 0°(GPa)	101	34.7	30.1	TBD	28.5	TBD	
Tensile Strain at Failure 0° (%)	1.79	2.41	2.46	TBD	TBD	TBD	
Flexure Strength 0°(MPa)	1220	866	759	TBD	602	TBD	
Flexure Modulus 0°(GPa)	105	37.5	34.3	TBD	29	TBD	
Flexure Strain at Failure 0° (%)	1.2	3.22	2.94	TBD	TBD	TBD	
Tg (°C)	90	90	80	TBD	TBD	TBD	

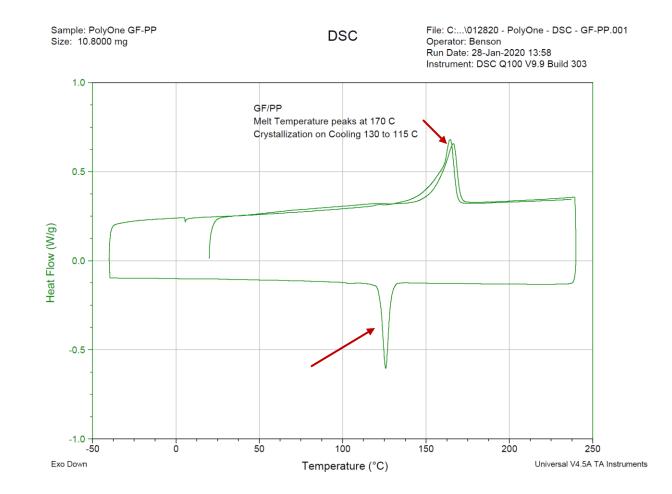
* These are experimental materials being developed by the manufacturer and their properties are not established yet. Our lab will be the first to establish these properties.

• DSC Tests to determine:

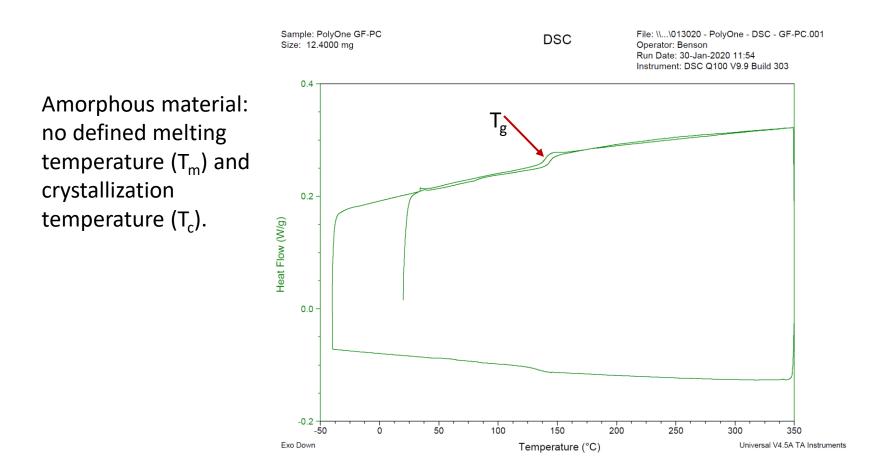

HERMOPLASTIC COMPOSI

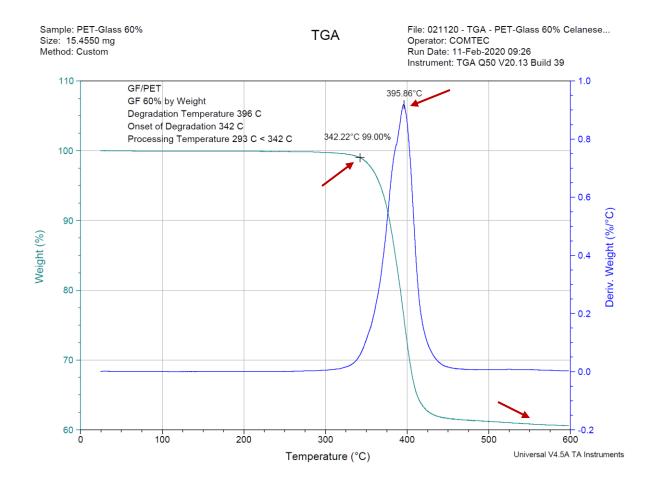
- Melting Temperature
- End of crystallinity temperature
- TGA Tests to determine:
 - Onset of degradation temperature
 - Degradation temperature
 - Fiber/matrix and filler contents


CF/PPS Processing Parameters

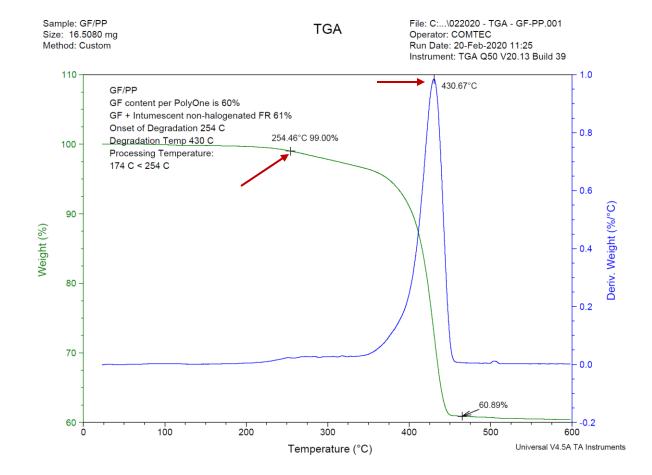


GF/PET Processing Parameters

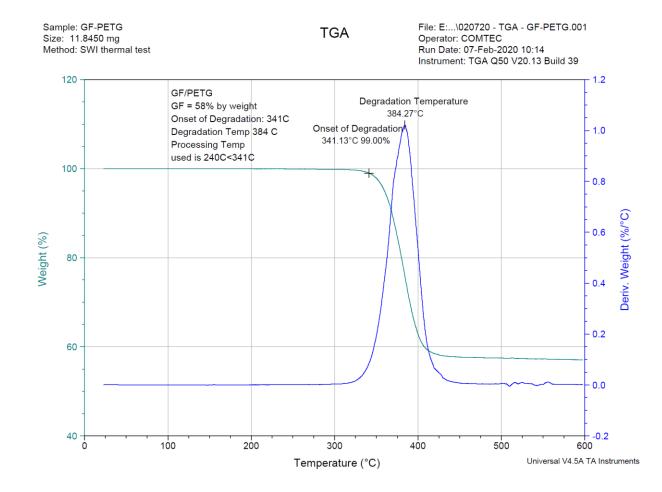

GF/PP Processing Parameters



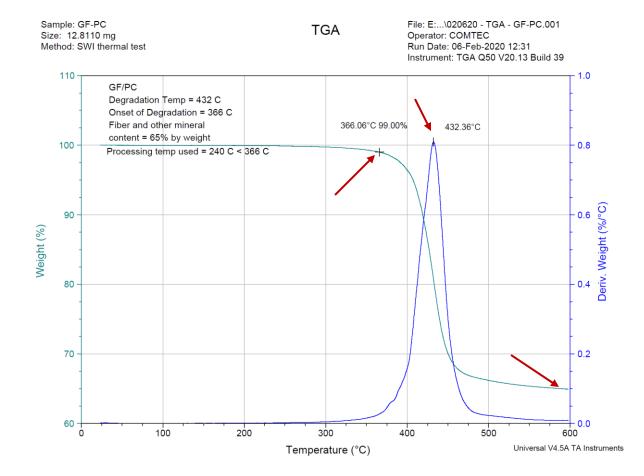
GF/PC Processing Parameters



GF/PET Fiber Content and Processing Temp.



THERMOPLASTIC COMPOSITES CONFERENCE 2020


GF/PETG Fiber Content and Processing Temp.

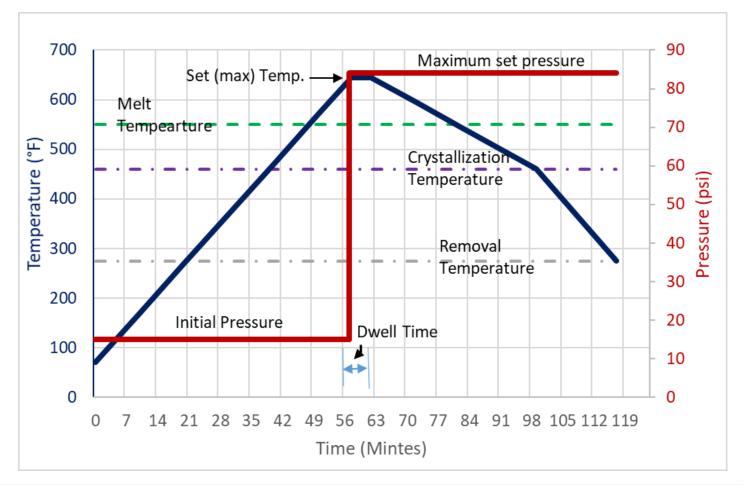
GF/PC Fiber Content and Processing Temp.

Processing Parameters Temp, Pressure, Time

Company	Material	Set Temperature °C (°F)	Pressure kPa (psi)	Dwell Time (Minutes)	Cooling rate °C/min	Removal Temp. °C (°F)	Drying Time** (Hours)	Drying Temp °C (°F)
Celanese	CF/PPS	340 (645)	580 (84)	5	5 (9 °F)	135 (275)	0	0
	GF/PPS	340 (645)	580 (84)	5	5 (9 °F)	135 (275)	0	0
	GF/PET	290 (555)	580 (84)	2	5 (9 °F)	65 (150)	4	93 (200)
PolyOne	GF/PC	240 (465)	193 (28)	3	15 (27 °F)	37 (100)	4	82 (180)
	GF/PETG	240 (465)	193 (28)	2	15 (27 °F)	37 (100)	4	121(250)
	GF/PP	174 (345)	193 (28)	2	5 (9 °F)	52 (125)	0	0

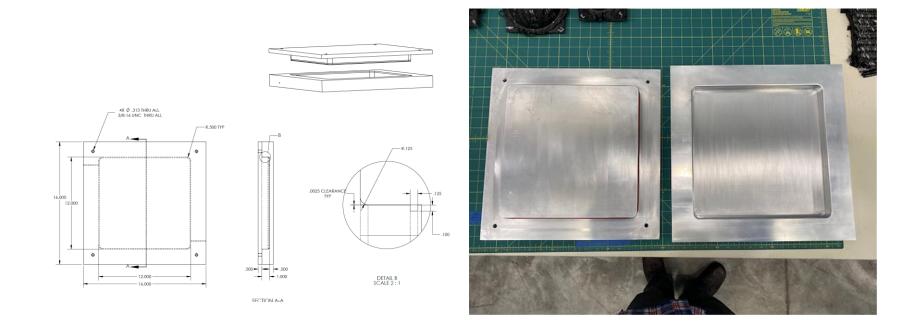
*Use a cooling rate of 5 °C/minute between set temperature and end of crystallization temp.

** Materials that should be dried immediately after removal from the mold



Processing Parameters Temp, Pressure, Time

Material	Initial Pressure (psi)	Tg °C (°F)	Set Temperature °C (°F)	Set Pressure (psi)	Dwell Time (Minutes)	Crystalln. Temp °C (°F)	Removal Temp. °C (°F)
CF/PPS	15	90 (194)	340 (645)	84	5	210 (410)	135 (275)
GF/PPS	15	90 (194)	340 (645)	84	5	210 (410)	135 (275)
GF/PET	15	80 (176)	290 (555)	84	2	160 (320)	65 (150)
GF/PC	15	150 (302)	240 (465)	28	3	-	37 (100)
GF/PETG	15	90 (194)	240(465)	28	2	-	37 (100)
GF/PP	15	130 (266)	174 (345)	28	2	110 (130)	52 (125)



Fabrication of Samples - Mold Design

Preparation for Samples Processing

Fabrication and Samples

Enters COVID-19

Summary and Concluding Remarks

- The goal of the study is to determine the long-term properties of continuous fiber reinforced thermoplastic (CFRTP) composites in various environments.
- Materials include CF/PPS, GF/PPS, GF/PET, GF/PC, GF/PETG, and GF/PP
- Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were performed to obtain baseline thermo-mechanical properties.
- These properties were also used to determine the processing temperatures of the materials and to verify the manufacturer's recommendations.

Summary and Concluding Remarks ..

- Samples are being fabricated and an extensive testing program is underway to determine the baseline mechanical properties and longterm properties in various environments.
- The baseline properties will be used to evaluate the degradation of materials in severe environments and will be available to industry for structural analysis, finite element analysis, and design.
- The long-term properties will serve as tools for durability analysis and prediction.
- The flame, smoke and toxicity properties will be used for effective design of materials for fire resistance and safety.
- The results of the experimental study and data generated will be shared with the industry at a following presentation.