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WEAV3D Inc. is an innovator in thermoplastic composite imletidii t1709
materials and manufacturing processes. ‘ |
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e Patent-pending technology produces low-density,
continuous-fiber-reinforced lattice structures

e Continuous manufacturing process reduces cost and
enables high-volume production

e |deal approach for optimizing structural plastics design for

automotive, aerospace, construction and other uses
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J.L. Thomason has published extensively on the topic of short and long
glass-fiber-reinforced polypropylene and polyamide plastics.

Focused on the effects of fiber length and fiber volume fraction on the tensile modulus, tensile strength and

impact resistance of these materials
e Key findings include:
o The critical fiber lengths for tensile strength, tensile modulus and impact resistance differ significantly
o Fiber volume fraction is linearly correlated to stiffness

o Fiber volume fraction is quadratically correlated to strength and toughness
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Effect of fiber length on mechanical properties, normalized against continuous-fiber properties.
Original figure modified to label short and long-fiber length scales. (Thomason, 2002)
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Glass Fiber Volume Fraction

Plot of Young’s modulus vs. fiber volume fraction. Values for flexural (triangle) and
tensile (circle) modulus are offset to show deviation. (Thomason, 2005)

PRESENTED BY

846“’1/4 Ménufactﬁring www.acmanet.org



t @o WARNAUABABELDB AN FIBER WEIGHT FRACTION vs. STRENGTH — LONG GLASS
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A plot of tensile strength (light blue) and flexural strength (dark blue) vs.
fiber weight fraction. (Thomason, 2005)
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A plot of Charpy (light blue) and Izod (dark blue) impact resistance vs. fiber weight fraction.
Charpy and Izod data is offset to more clearly show the data. (Thomason, 2005)
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Modulus - Load transfer and distribution between fiber and matrix
e Fiber alignment
e Fiber volume fraction
e Fiber modulus
Strength - Failure mode (fiber, matrix, interface)
e C(Critical length
e Interfacial adhesion
e Fiber distribution/wetting
Toughness - Fracture mechanics (propagation, deflection, arrest)
e Reinforcement-induced stress concentrations
e Fiber volume fraction driven ductile-brittle transition

e Crack deflection length
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(Left) Stress-strain curve for reinforcement fiber and plastic matrix. (Right) Relationship
between fiber volume fraction (Vf) and strength of CFRP, developed from figure on the left.
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Rebar for Plastics™

LIGHTWEIGHT STRUCTURAL
COMPOSITE PART

COMPOSITE LATTICE

INJECTION/COMPRESSION
MOLDING OR THERMOFORMING
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HYBRID LENGTH — SCALE STRUCTURES
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Rebar for Plastics™

* Combination of:

o Continuous fiber-reinforced tapes

o Overmolded fiber-reinforced thermoplastic
* |ndependent tuning of:

o Stiffness

o Strength

O Toughness

* Localized performance and cost optimization
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POLYPROPYLENE PALLET
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Finite element analysis of 14,000 Ib load over top
surface of long fiber-reinforced polypropylene pallet
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( G HARKABABLBELDBAN CASE STUDY — LONG FIBER-REINFORCED PLASTIC BASELINE

Baseline case using generic model, adjusted for
realistic wall thickness and internal structure

A: Unreinforced Pallet

Total Deformation

Ty?e:'TotaI Deformation
e Long Glass PP (Vf = 16%) el

3/31/20205:22 PM

e 4.9 GPaisotropic modulus 1.6148 Max
5 1.4354

e Maximum deflection of 40.64 mm :f;:s

— 0.89714

e Yield stress exceeded H 3;;;2;

0.35885
e Mass=16.9kg H 0.17343

0 Min

30.000 {in)
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SHEET REINFORCEMENT
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Simulate pallet under same load with organo sheet
reinforcement laid evenly across top surface of pallet

D: Double Organosheet Reinforced Pallet
Total Deformation
Type: Total Deformation
Unit: in

e Glass/PP organo sheet (Vf = 47%) Time: 1

4/2/2020 7:51 PM

1.0381 Max
0.92273
0.80739
0.69205
057671
046137
0.34603
0.23068
0.11534

0 Min

e 20 GPain-plane modulus (X-Y)
e Maximum deformation: 26.16 mm

O 2-layer sheet

NN

e Mass =2 kg organo sheet + 15.5 kg plastic

0.000 15.000 30.000 (in)
[ E—  ES—
7.500 22.500
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LATTICE REINFORCEMENT
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Optimized design with lattice reinforcement

B: Lattice Reinforced Pallet
Total Deformation
Type: Total Deformation
Unit: in
e Glass/PP UD Tape Lattice (Vf = 45%) Time: 1

3/31/2020 5:28 PM

e Unidirectional tape modulus: 37 GPa ] L3935 Max

— 0.30827
0.26423
0.2202

0.17616
013212

e Maximum deformation: 10.06 mm

W

o 2-layer lattice configuration

0.088078
e Mass =0.73 kg lattice + 16.37 kg plastic i bt

0.000 15.000 30.000 (in)
L ESE—
7.500 22.500
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CASE STUDY
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Results Comparison

Long Glass Reinforced Long Glass plus Lattice

Max Deformation 40.64 mm 26.16 mm 10.06 mm
Deformation Change | - | -35.6% | -75.2%

‘ Total Pallet Mass | 16.9 kg | 17.5 kg | 17.1 kg

‘ Mass Change | - | +3.6% | +1.2%

‘ Total Material Cost | $35.49 | $62.93 | S42.37

Cost Change - +43.6% +19.4%

Substantial stiffening can be achieved with controlled mass and cost change,
further optimization could reduce cost and/or mass by tuning max deformation
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A true Rebar for Plastics™ solution

 For non-aerospace applications, traditional composite
laminates are overkill and not justifiable for the cost

 Laminate back-injection is a step in the right direction, but:

o Relies on laminate for all mechanical properties, only
using molded plastic to adjust section properties

o Conventional laminates are expensive and unsuitable to
high-volume mass production

 WEAV3D process enables low cost, high volume production of
optimized lattices

O Molded plastic remains the dominant material in the part

O Use of continuous material is optimized to meet
performance properties while minimizing cost and weight
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Contact

WEAV3D Inc. is seeking partners interested in developing new product offerings for the automotive
market using WEAV3D lattice preforms. For more information about partnering opportunities, please

contact me at chris.oberste@weav3d.com.

WEAV 3D
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