

Thermoplastic Composites Conference

Advancements in Thermoplastic Bonding and Joining

Waruna Seneviratne, PhD

Director NIAR-ATLAS | Sr. Research Scientist

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

Thermoplastics in Aerospace

- Benefits for aerospace applications
 - Resistance to aggressive environments such as high humidity, high temperature, and saltwater exposure
 - Better flame resistance compared to most thermosets
 - Less stringent cleanroom requirements and no shelf life
 - Impact (high fracture toughness), chemical, and flame resistance
 - Lengthy and costly autoclave cycles can be eliminated
- The capability to sustain multiple cure cycles -> Recycling!
 - Non-traditional joining approaches such as fusion bonding (welding) can be implemented in order to significantly reduce weight and cost over mechanical fastening and adhesive bonding (surface preparation)

Thermoplastic Bonding

- Regulations thermosets vs. thermoplastics (ensure reliable load path between two separate structural elements)
 - Material and process control
 - A structural adhesive bond must be accomplished in a way that it predictably and reliably transfers load for the lifetime of the bonded structure
- Thermoplastic materials are generally more challenging to bond than thermoset materials because the surface can be more difficult to chemically activate for bonding
 - Cleaning → Chemically activating → Stabilizing (resisting hydration)
- Certification of Bonded joints
 - Bond QA → no NDI method or techniques can reliability detect bad/weak bonds or quantify long-term durability; in-service damage evaluation
 - Proof-load testing → costly and time-consuming
 - Prevention by design features

 chicken rivets! (inefficient load path, stress concentration, increased laminate thickness, weight)

Thermoplastic Welding

- Regulations bonding vs. welding (co-cured or co-bond or secondary bond???)
- Certification of Welded Joints
 - AC 20-107B: Composite Aircraft Structure describes means of compliance unique to bonded structure
- Scaling issues
- Lack of established best practices and analysis methods

The Effects of Process Parameters and Material Type on an Inductively Welded Thermoplastic **Unidirectional Tape Composite Joint**

John C Monsees Chief Technologist, Thermoplastic Laboratory COE

Qarbon Aerospace Red Oak, Texas

Qarbon Aerospace - Overview

- Qarbon is an accredited premier Tier 1 level supplier
- Currently three facilities around the world at 1.7 million square feet

Red Oak, TX

- 123 acre site
- 38 miles SE of DFW Int'l Airport
- 772,000 ft² of manufacturing space
- 415 employees
- Large Complex Structural Assembly
- AS9100D and NADCAP Certified

Milledgeville, GA

- 165 acre site
- 93 miles SE of Atlanta, GA
- 650,000 ft² of manufacturing space
- 332 employees
- Premier Composite Manufacturing
- AS9100D and NADCAP Certified

Rayong, Thailand

- 44 acre site
- 62 miles from Suvarnabhumi Int'l Airport
- 150,000 ft² of manufacturing space
- 175 employees
- Low cost Complex Composite Components
- AS9100D and NADCAP Certified

Qarbon Aerospace – Overview Cont.

• Qarbon is very active in supplying major composite structures in many aerospace programs

Red Oak, TX

Military Programs

- V-22 Integrated Empennage

 Spare & Fleet Repair Components
- HALE Integrated Wing

 Spare Components
- F135 Engine Compressor Duct

 Spare Ducts
- T-7A Wing & Empennage
- C-17 Spare Components
- Lockheed F-35 Supplier Certification

Commercial Programs

- 767 Pressure Dome • Spare Domes
- Bell 525 Fuselage Panels
- G600 Horizontal Tail
- LIFT Aircraft HEXA eVTOL
- G550 Spare Components

Milledgeville, GA

- 787 Frames, Longerons and Stringers
- 777 Flaps, Spoilers and Ailerons
- 767 Wing Center Section Keel Beam & Seal Depressor panels
- KC-46A Tanker Engine Cowls
- G650 Spoilers, FTE, Winglets & Cove panels
- HALE Wing Structure
- V-22 Wiper Fairings and Ramp & Door assemblies
- Embraer E-2 Rudder & Elevator

Rayong, Thailand

- Trent 700 (A320)

 Front & Rear Acoustic Panels
 Fan Track Liners & Carbon Seals
- Trent 800 (777)
 Rear Acoustic Panels
- BR725 (G650)
 Rear Acoustic Panels
 Fan Track Liners
- Pearl 700

 Front & Rear Acoustic Panels
 Fan Track Liners
- A350

o Rudder Leading Edge Fairingso NSBB EPDC & Umbrellas

- o Sewing Angles & Rudder Details
- Parts on A320, A330, 787
 & LIFT Hexa eVTOL

Qarbon Aerospace – Overview Cont.

• Qarbon is very active in supplying major composite structures in many aerospace programs

Red Oak, TX

Military Programs

- V-22 Integrated Empennage

 Spare & Fleet Repair Components
- HALE Integrated Wing

 Spare Components
- F135 Engine Compressor Duct

 Spare Ducts
- T-7A Wing & Empennage
- C-17 Spare Components
- Lockheed F-35 Supplier Certification

Commercial Programs

- 767 Pressure Dome • Spare Domes
- Bell 525 Fuselage Panels
- G600 Horizontal Tail
- LIFT Aircraft HEXA eVTOL
- G550 Spare Components

Milledgeville, GA

- 787 Frames, Longerons and Stringers
- 777 Flaps, Spoilers and Ailerons
- 767 Wing Center Section Keel Beam & Seal Depressor panels
- KC-46A Tanker Engine Cowls
- G650 Spoilers, FTE, Winglets & Cove panels
- HALE Wing Structure
- V-22 Wiper Fairings and Ramp & Door assemblies
- Embraer E-2 Rudder & Elevator

Rayong, Thailand

- Trent 700 (A320)

 Front & Rear Acoustic Panels
 Fan Track Liners & Carbon Seals
- Trent 800 (777)
 Rear Acoustic Panels
- BR725 (G650)
 Rear Acoustic Panels
 Fan Track Liners
- Pearl 700

 Front & Rear Acoustic Panels
 Fan Track Liners
- A350

o Rudder Leading Edge Fairingso NSBB EPDC & Umbrellas

- o Sewing Angles & Rudder Details
- Parts on A320, A330, 787
 & LIFT Hexa eVTOL

Basic Induction Technology Overview

- Qarbon Aerospace along with other notable Tier 1 suppliers are investing millions into this revolutionary joining process
- The processes are similar and yet different in their approaches but the goal is the same . . .

Thermoplastic Fabric or Unitape Induction welding is an attractive alternative to adhesive bonding or fastening due to its potential for out-of-autoclave processing, weight savings, and labor reduction.

Alternating current passes through a coil Coil generates Alternating Magnetic Field Eddy currents are generated in carbon fibers

Manufacturing Assembly Process – The Driver!

LEGACY ASSEMBLY METHOD

-Tooling intensive

-Significant effort to change configuration or alter detail part designs

-Large footprint with fixed costs

Modular Locating Assembly Jigs Drive add flexibility & lower costs

Flexible

QARBON POTENTIAL

-Lower costs without major assembly jig per assembly
 -Flexible robotic work cell has capacity to support multiple
 programs

-Modular factory adaptable to multiple vehicles & volumes

Start with analysis – Joint Design & ANSYS

Start with analysis – Joint Design & ANSYS

F: Transient Thermal Temperature Type: Temperature Unit: °F Time: 9.25		ANSYS 2020 R1
6/17/2021 3:50 PM 750.59 Max 674.64 598.69 522.75 446.8 370.85 204.01		
210.50 143.01 67.066 Min		
		z
	-	¥

General Weld Development Procedure

Baseline – Autoclave Results

Parameter	Fabrication	Weld Preparation	LSS (MPa)	% Crystallinity
Baseline	Autoclave Cycle	Ambient, Solvent Wipe	45.5 ± 4.8	23.0 ± 2

Ultrasonic Inspection

Represents Nominal Processing Temperature, Pressure, and Cooldown Rates

DSC Results

Temperature Process Parameters

Slight knockdown (10%) most likely due to specimen deformation. Deformation will be mitigated with improved tooling.

Temperature Process Parameters - Luna

Temperature Results

Parameter	Temp (°C)	LSS (MPa)	% Crystallinity
Baseline	Autoclave Cycle	45.5 ± 4.8	23.0 ± 2.0
	330	45.3 ± 1.9	14.5 ± 3.6
	350	46.4 ± 0.6	11.2 ± 0.8
Tomporatura	371	42.3 ± 2.7	10.5 ± 2.1
Temperature	400	42.4 ± 1.0	11.0 ± 2.1
	430	42.0 ± 0.9	11.3 ± 1.0
	450	43.4 ± 0.3	8.2 ± 2.5

Weld Rate: 6.35 mm/s

<10% Reduction in LSS vs. Baseline

Do not see major knockdown at temperatures > 371 °C. All specimens had low crystallinity.

UT Inspection & Destructive Analysis

Edge to edge welding & joint exhibits fiber breakage at weld interface

Weld Rate Process Parameters

Ultrasonic Inspection

Weld Rate Comparison

Parameter - Evaluations

<10% Reduction in joint strength compared to vs. Baseline pristine autoclave consolidation.

Qarbon welding joint strength exceeds thermoset co-cured autoclave strength

Strength (ksi)

Shear

Lap

5

3

2

0.05 in/s

Baseline Co-consolidated Autoclave

TYP. Co-cured & Fastened Joints

0.1 in/s

TYP. Adhesive Bond

0.25 in/s

0.5in/s

Thermoplastic savings – Manufacturing sanity check

THERMOPLASTIC MANUFACTURING COST SAVINGS OUTWEIGHTS PARTIAL AUTOMATION IN THERMOSET

THERMOPLASTIC SAVINGS - PRODUCTION OF 2,500 ANNUAL SHIP SETS

- 39% reduction in manufacturing floor space
- 87% reduction in detail part tooling
- 64% reduction in manufacturing labor
- Increased repeatability (reduced defects)

Tooling Non-recurring

 TS = 860 detail part layup tools, 16 1st stage assembly jig, 28 2nd stage assembly jig

(10 SS PER DAY!)

• TP = 96 press molds, 10 sub-assembly jigs, 14 final assembly jigs

rials	Factory	Non-recurring		
time	 TS = 499K sq foot manufacturing facility 			
	• TP = 309K sq fo	ot manufacturing facility		
	Capex	Non-recurring		
rials time	• TS = 85 pieces c	f major equipment to meet rate requirements		

• TP = 60 pieces of major equipment to meet rate requirements

Сарех	RE Labor	Factory	Tooling
• TS = \$142M	• TS = \$169M	• TS = \$87M	• TS = \$42M
• TP = \$88M	• TP = \$65M	• TP = \$50M	• TP <u>= \$10M</u>
Savings = (\$54M)	Savings = (\$104M)	Savings =(\$37M)	Savings =(\$32M)

NRE Reduction = \$123M RE reduction = \$104M/Year

Induction Welding "ENABLING" New Aerostructure

Fusion joining of structure

- Removes fasteners from assembly
- Manufacturing cost reduction
- $_{\circ}\,$ Joint strength exceeds common methods
- Weight savings opportunity
- World beating capability
 - Dis-similar thickness joint
 - One side only access
 - Reduced tooling requirements
 - Scalable for primary structure

Ready for platform specific requirements

Patented technology that is proven, repeatable, predictable and remarkable

Questions - ?

John.Monsees@QarbonAerospace.com

Additional Authors

Marie Smith Marie.Smith@QarbonAerospace.com Andy Glidewell Jonathan.Glidewell@QarbonaAerospace.com John Hannappel John.Hannappel@QarbonaAerospace.com

Bonding and Joining Panel Session

Mario Valverde

Bristol Composites Institute, University of Bristol

Overview

- What challenges are we facing in bonding?
- What can we do?
- Understanding the bonding process
- An overmoulded ribbed plate case study

What challenges are we facing in bonding?

- How do we deploy these parts and technologies into industry?
 - Certification requirements
 - Is there confidence in the technology?
 - History of thermoplastics is short (but growing!), Fig. 1.
- How do we accurately evaluate the bond quality?
 - Which methods are appropriate?
 - What metrics do we use?
 - Benchmark?
 - We cannot see the created interface during processing
 - Novel techniques to visualize the joining process, Fig. 2.

Fig.1: Annual publications on "thermoplastic composites" and "PEEK composites".

Thermoplastic Composites Conference 2022 Fi

Fig.2: Schematic test set-up for in-situ CT of a clinch joint [1].

What can we do?

- Encourage R&D projects with a variety of stakeholders
 - Suppliers, tooling, manufacturer, end-user, academia...
 - This fosters knowledge transfer
 - Risk mitigation can be addressed early on in project
- Development of simulation techniques to support experimental campaigns and Industry 4.0 trends
- Modular lab-scale equipment, Fig. 3.
 - Simple to integrate and operate
 - Allows for large-scale data capture
 - Cost-effective

Fig. 3: Compaction test rig in universal test machine [2].

Fig. 4: Overmoulded component examples [3].

Understanding the bonding process

- What is (fusion) bonding?
 - Heat
 - Pressure
- Processing window is driven by the manufacturing technique, some examples include:
 - Automated fibre placement
 - 3D printing
 - Overmoulding, Fig. 4.
 - Many more...
- Application >> part design >> manufacturing

An overmoulded ribbed plate case study – why it is important to understand the process

- How can we optimise the bonding of the overmoulded interface?
 - Increased pre-heating temperatures improves the bond strength, Fig. 5.
 - Also causes localised deformations, which can affect:
 - Component processability, Fig. 6.
 - Rib pull-off load, Fig. 7.
 - Overall structural performance

As-manufactured

Fig. 6: As-designed, as-predicted, and as-manufactured overmoulded interface of a ribbed plate specimen [4].

As-predicted

As-designed

Thermoplastic Composites Conference 2022

Fig. 5: Diagrams of key stages during the overmoulding cycle, showing final manufactured CF/PPS ribbed plate [4].

Fig. 7: Ribbed plate section micrographs showing different failure types (due to deformations) for each specimen [4].

References

- 1. Köhler, D., Kupfer, R., & Gude, M. (2020). *Journal of Advanced Joining Processes Clinching in in-situ CT A numerical study on suitable tool materials*. 2(October). <u>https://doi.org/10.1016/j.jajp.2020.100034</u>
- Valverde, M. A., Belnoue, J. P., Kupfer, R., Kawashita, L. F., Gude, M., & Hallett, S. R. (2021). Compaction behaviour of continuous fibre-reinforced thermoplastic composites under rapid processing conditions. *Composites Part A*, 149(June), 106549. <u>https://doi.org/10.1016/j.compositesa.2021.106549</u>
- 3. Valverde, M. A., Kupfer, R., Kawashita, L. F., Gude, M., & Hallett, S. R. *NCC Discover: Composites Overmoulding Conference*, Bristol, 2019, Conf. Slides
- 4. Valverde, M. A., Belnoue, J. P., Kupfer, R., Kawashita, L. F., Gude, M., & Hallett, S. R. 24th International Dresden Lightweight Construction Symposium, June 2021, Conf. Slides

