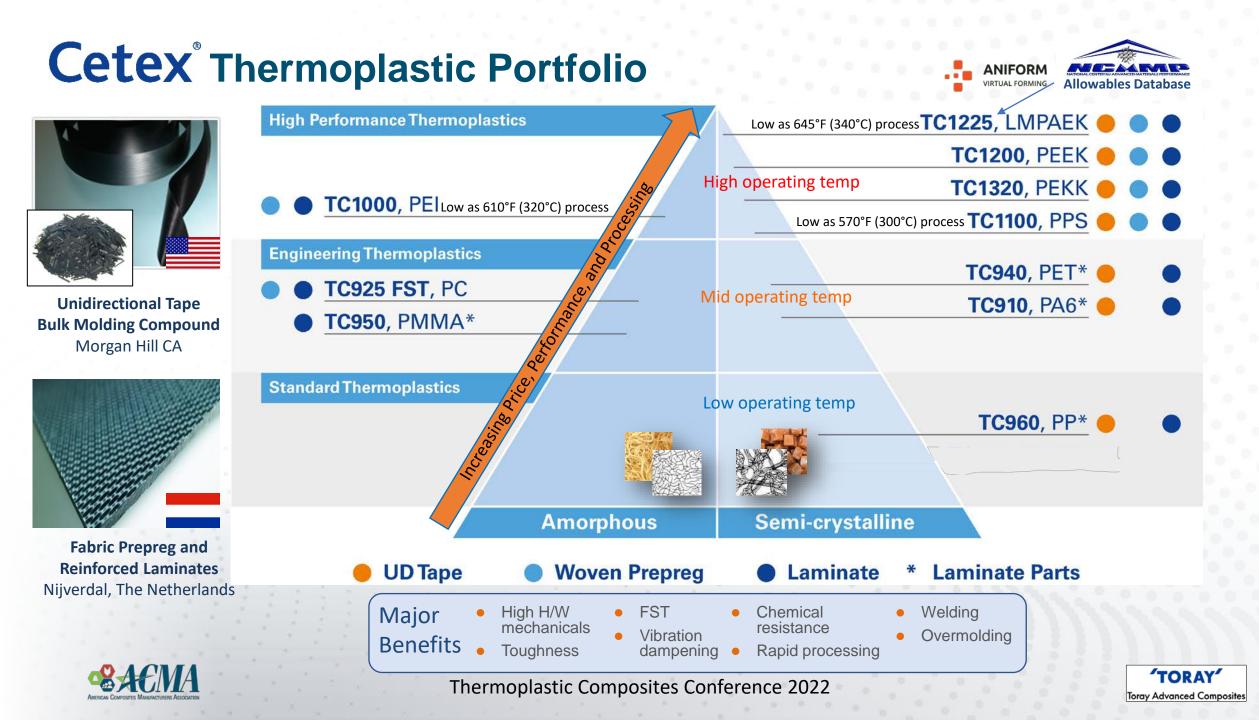


Thermoplastic Composites Conference

Achieving the Renaissance in Manufacture of Large Integrated Aerostructures via Thermoplastic Composite Technologies

DeWayne Howell

Toray Advanced Composites


Thermoplastic Composites Conference 202

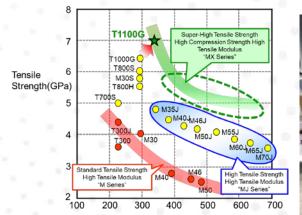
Material & Processes

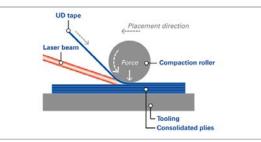
Part Fabrication Processes

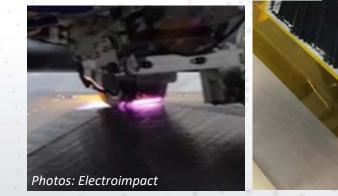
Thermoplastic Composites Conference 2022

Toray Advanced Composites

Automated Fiber Placement Trials




Thermoplastic Composites Conference 2022


AFP Trial Goals

- Automated Fiber Placement (AFP) with LMPAEK
 - TC1225 LMPAEK T1100 145gsm 34%RC ¼" slit tape
 - For comparison both TC1200 PEEK T1100 and TC1320 PEKK AS4 were also tested
- AFP + OoA consolidation focus
 - offers higher throughput than In-situ
- High speed layup for rapid processing facilitates ease of tow replacement
- Working with Electroimpact and Janicki

21 Toray Advanced Composites

merce and the

AFP Process

Thermoplastic Processing @ 4000 IPM (100m/min)

ELECTROIMPACT

• Electroimpact system uses laser heating, directed beam per tow (Variable-Spot-Size Laser) to optimize heating across individual tows in a course

 Tack level can be adjusted by laser power and speed

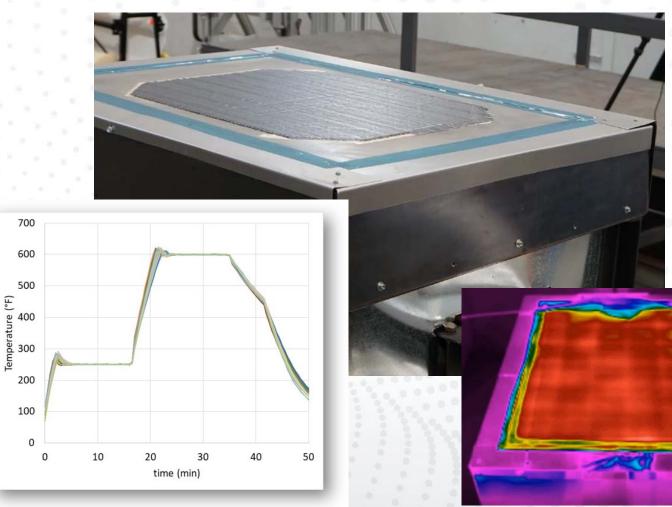
• EI has demonstrated course layup speeds of 4000 in/min (~100 m/min) - 4-to-6 times increase in productivity

Video: Electroimpact

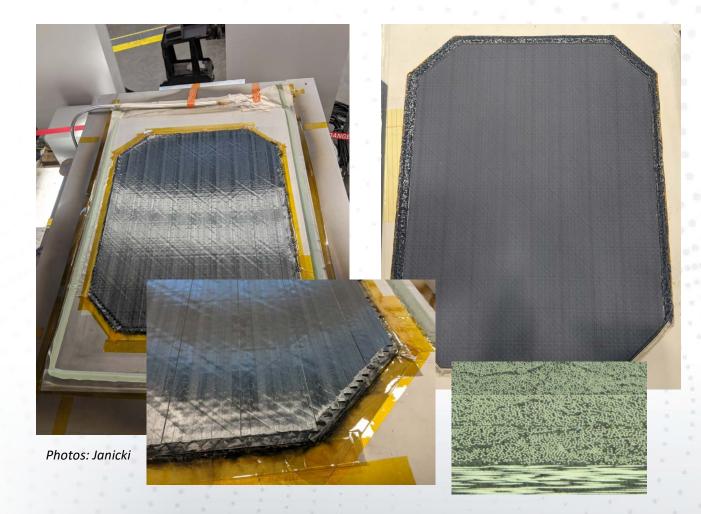
AFP Setup

- 18"x24" panel size
- 8 tows/course
- 1,600 in/min speed
 - Panel size too small for 4,000 ipm
- 350°C targeted at nip point
 - Below normal 365C processing temp for low tack

AFP Tow Replacement

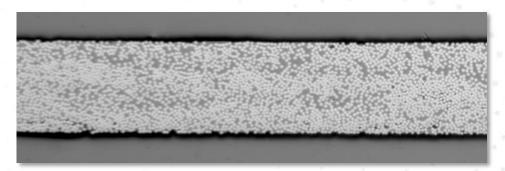

- Balance between tack level and nip temperature – 350°C gave moderate tack for TC1225 LMPAEK T1100
- Remove tow without displacing tows beneath
- Removed and replaced tows several times within a layup
- Resulted in laminate that is semi-consolidated through the thickness

• The Janicki VBO process utilizes highly distributed tool side uniform heating and cooling for very fast consolidation process cycles and can be scaled for large area parts.



Photos: Janicki

KIANICKI Demonstrates Low Void Consolidation

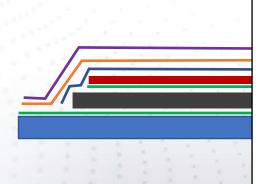


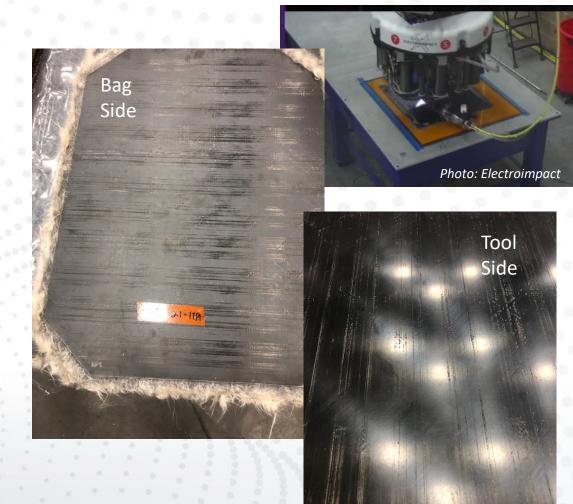
- TC1225 LMPAEK T700
- Vacuum bag only pressure
- Near ZERO voids
- Achieved by controlling the key stages of melt, flow, and crystallization with precise temperature control.
- Findings from previous work done by EI and Janicki

TC1225 LMPAEK Enabler for AFP + VBO

Typical cross-section of TC1225 UD tape

Physical data		
Glass Transition Temperature (°C)	147	
Melt Temperature (°C)	305	
Crystallization Enthalpy (J/g)	130	

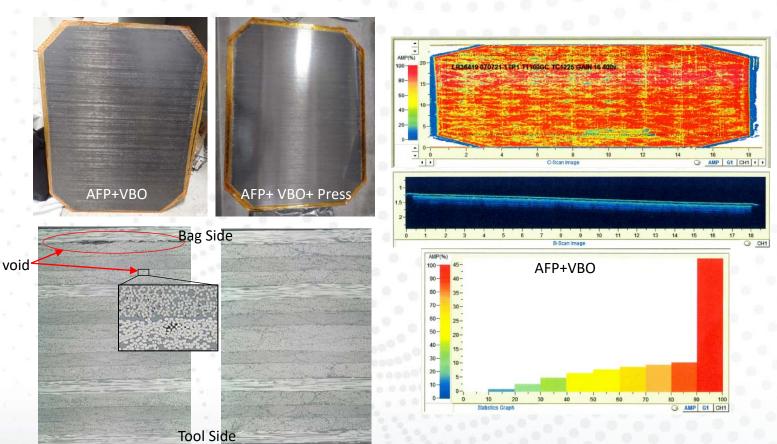

- The lower viscosity of TC1225 LMPAEK compared to TC1320 PEKK or TC1200 PEEK
- Should give an advantage in the elimination of voids during AFP+ VBO.
 - There are three void evacuation mechanisms: diffusion through the thickness, in-plane air evacuation and void filling.
 - Lower viscosity will allow for easier flow into void areas of a laminate that can occur at ply drops or at tow gaps.
- AFP laydown speed: Lower viscosity polymer can flow into void areas more quickly before the compaction head passes over a feature and the TC1225 LMPAEK solidifies, thereby allowing for higher speeds to fill a given void.
- Uniform fiber distribution and constant thickness crossection UD slit tape results in improved AFP layup quality (especially for in-situ)



Trial Results for TC1225 LMPAEK T1100

- AFP laydown was very good
- Janicki VBO tool consolidation cycle
 - 100F/min to 250F, hold 5m, 100F/min to 365C, hold 30m, 100F to 290C, hold 5m, 100F to cool

Insulation Vacuum Bag Non-woven Fg Breather Steel Caul Sheet Release Agent Laminate Release Agent Tool Plate

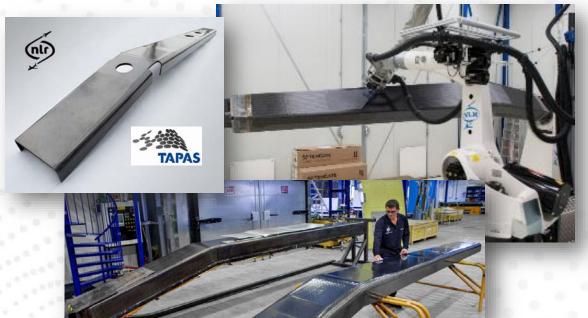


Trial Results for TC1225 LMPAEK T1100

- Process was not optimized.
- C-Scan shows surface roughness.
- Tow gaps, on order of 0.01", and 16 ply vs 24 ply testing may contribute to strength differences compared to press.
- Longer dwell, and slightly higher consolidation temperature, along with higher nip point temperature during AFP would help to increase strength. Optimization trials would be the next step.
- Acid digest gives low void content & micrograph confirms. Dominant void between last and 2nd to last ply will affect strength.
- OHC is very good.
- AFP+VBO+Press increases strength over AFP+VBO by ~8%

Panel	Layup	Thick (in)	PPT (in)	UNC (ksi)	UNCm (Msi)	OHC (ksi)	OHCm (Msi)	UNT (ksi)	UNTm (ksi)	SBS (ksi)	Fv	Rc (wt)	Voids
AFP + VBO (1 panel)	16 ply QI	0.0906	0.0057	65.2 (0.9)	8.2 (0.18)	43.4 (0.85)	6.2 (0.57)	133.3 (1.7)	8.6 (0.02)	11.9 (1.0)	57.50%	34.40%	1.10%
Layup + Press (>1 panels)	24 ply QI	0.144	0.006	85.0	8.5	45.0		180.0	8.5	13.0		34.00%	0.40%
% of L+Press				77%	96%	96%		74%	101%	92%			275%
Average values with (STDE	V)												

Large R&D Projects Leading Future Developments



Rudder and Engine Pylon

Gulfstream G650 Rudder

- Cetex® TC1100 PPS CF
- Stamp form + induction weld
- Overnight automated induction welding
- 10% lighter and 20% lower cost than sandwich thermoset construction

Engine Pylon Top Spar Demonstrator

- Cetex[®] TC1320 PEKK AS4D
- Designed and Manufactured by NLR
- AFP + autoclave Laser, Coriolis
- Part length approx. 6m
- Part thickness up to 28mm (1.1")

Thermoplastic Composites Conference

Source: NLR

Bulkhead ad Ruddervator

Pressure Bulkhead Demonstrator

- Cetex[®] TC1100 PPS CF
- Airbus A320 rear bulkhead
- 8 stamp formed triangular sections resistance welded together
- 15% lighter, 10% lower cost, and reduction in process time by 75%

Bell V-280 Valor Ruddervator Demonstrator

- Cetex[®] TC1100 PPS CF
- GKN Aerospace fabricated
- Induction welded
- Advanced thermoplastic Ruddervators significantly reduce weight, cost and part count.
 + access door from scrap
- Still flying on the demonstrator today

Clean Sky 2 Multifunctional Fuselage Demonstrator

Photo: NLR

PLR

DIEH

Facher

TUDelft

- Cetex[®] TC1225 LMPAEK CF
- Automated fiber placement (AFP)
- Fuselage skins fabricated in two 90-degree segments and joined via co-consolidation
- Resistance, Ultrasonic and Conduction Welding
- TPC fuselage skins, frames, stringers, beams and door frames
- Multi company participation
- 10 year program 2014-2024

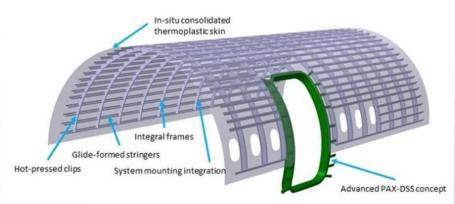
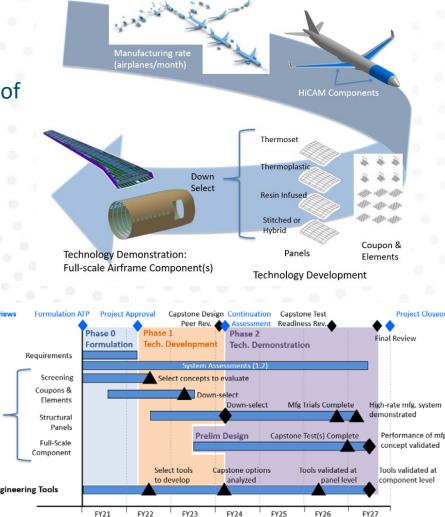


Photo Credit: DLR

GAIRBUS

AERINOVA

Fraunhofer


A AERATEC

Hi-Rate Composite Aircraft Manufacturing (HiCAM)

- NASA partnering with industry to increase single isle **composite** aircraft manufacturing rate, reduce costs, and improve performance.
- Performance Metrics: 60 to 80 shipsets/mth, cost reduction 30% to 50% of baseline, <2% heavier than baseline, TRL 6 and MRL 6 by closeout.
- Develop model-based engineering tools for high-rate concepts.

21

25

17

25

16

20

11

Composite material suppliers

Engineering software developers

FAA, preview emerging technology

Manufacturing and inspection equipment

Universities - aero R&D, future workforce

Source: NASA

Thermoplastic Composites Conference 2022

Total

6

126

80

206M

TORAY

Toray Advanced Composites

DeWayne Howell Expert Services, Applications Engineer d.Howell@toraytac-usa.com 720-583-5080

www.toraytac.com

More Information at:

Twitter: @TorayTAC Facebook: @TorayTAC LinkedIn: @torayadvancedcomposites

Thermoplastic Composites Conference 2022

