

Robotic 3D Printing of Continuous Carbon Fiber - PAEK Tape

JP Canart / Kazem Fayazbakhsh Teijin Carbon America, Inc / Ryerson University

+1 514 894 6232

jpcanart@teijincarbon.us

TEIJIN TEIJIN CARBON AMERICA, INC.

Ryerson University

Learning Objectives

At the end of this session - Participants will be able to -

- Understand progress done over to achieve 3D printing of continuous highperformance CF TPC tape
- Have a first understanding of the benefits as well as the limits of the technology
- Get the perspective of next development steps

Details about the Teijin's Carbon Fiber BU

Global production bases

We have **3** production bases in Japan, Europe and U.S.(from 2020)

Commissioning a new factory to respond to demand for aircraft applications

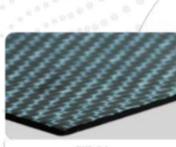
U.S.

ΤΕΙͿΙΝ

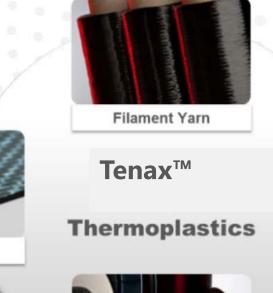
TEIJIN CARBON AMERICA, INC.

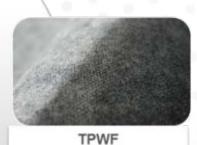
Breakdown of Carbon fibers by applications

- (based on our sales in FY2019)Tennis
macketsSports and
recreationImage: Image: I
- Keep and increase position as one of the leading company in carbon fiber, its textile and prepreg for aerospace applications with strength of technological superiority
- Aim for annual sales of over \$900 million, mainly in aviation industry by 2030
 Thermoplastic Composites Conference 2022


Compounds

TEIJIN CARBON AMERICA, INC.


Tenax[™] ThermoPlastics


- Carbon fiber with tailored sizing for Thermoplastics polymer (Tenax[™] Carbon Fiber)
- 4 millions lbs existing capacity in Germany (+ new SC line 6 Millions lbs/y)
- Powder coated woven fabric (Tenax[™] TPWF)
- Pre-consolidated laminates (Tenax[™] TPCL)
- Unidirectional (UD) tape (Tenax[™] TPUD)
- 2 TPUD lines in Germany (12" and 24")

Key technology focus for Teijin

FRAMES

- Facility for Research on Aerospace Materials and Engineered Structures (FRAMES) at Ryerson University, Toronto, CANADA
- Complete cycle of 3D printing, full-scale mechanical testing, and materials characterization

Ryerson University

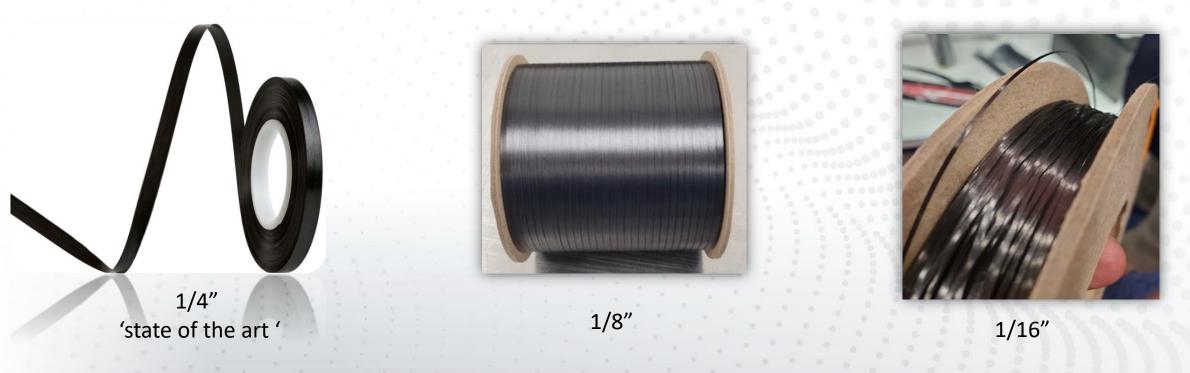
3D printing of continuous carbon fiber thermoplastic composites

All started from a shared 'dream' of achieving high performance 3D printing of Carbon Fiber TPC

R&D collaboration between Ryerson and Teijin started in 2018 with a focus on:

- Robotic 3D printing
- Continuous carbon fiber composites
- High-temperature/High performance thermoplastics

TEIJIN CARBON AMERICA, INC.



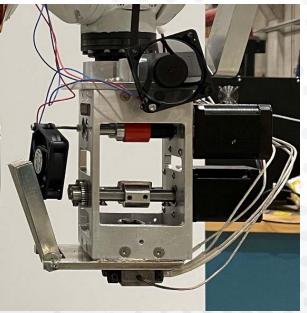
Material development

Type of materials used and developed for this program: Tenax[™]-E TPUD **PEEK-HTS45** and Tenax[™]-E TPUD **PAEK-HTS45 Focus on ¼" and 1/16" products**

Evolution of nozzles

- Nozzle width to process different tape widths (1/16" vs 1/4")
- Nozzle geometry (round, slotted, with dowl pins, etc.)

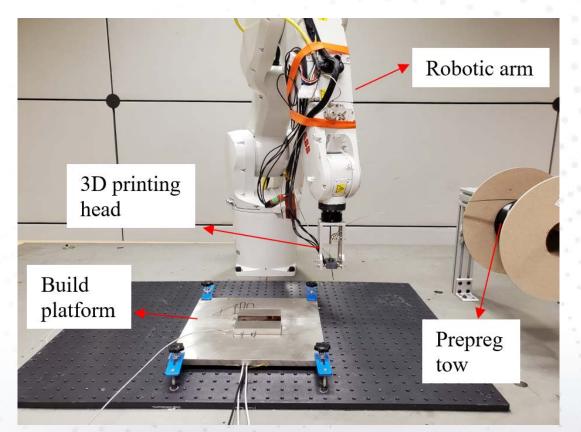
Nozzles investigated since 2018


An early version of 3D printing head showing the nozzle

Evolution of the 3D printing heads

- Without feeding or cutting capability
 - Can work for 1/16" tow width

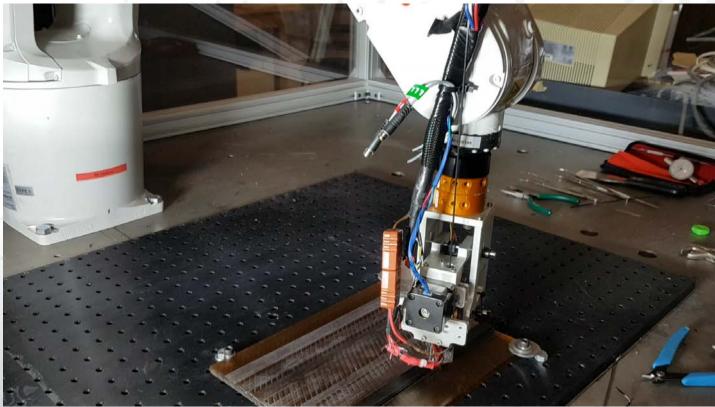
With feeding and cutting capability
Can give more flexibility to the process


3D printing head Without feeding or cutting

3D printing head With feeding and cutting

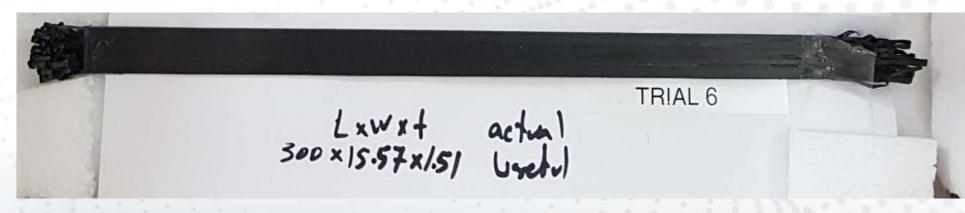
The complete 3D printing set-up

• Stainless steel build platform


The preliminary set-up with an early-version 3D printing head

The final set-up with a second-version head

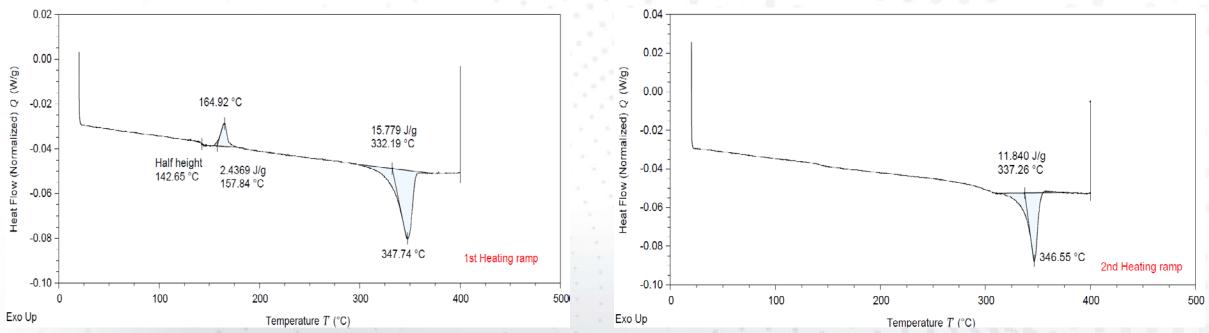
- Tensile specimens on a PEI build platform
- 0 deg fiber orientation with a speed of 10 mm/s (23.6"/min)
- Circular nozzle, no feeding or cutting
- Nozzle temperature of 380, 390, and 410 °C, (716, 734, 770 °F) and room temp bed



Tensile testing results

Results per ASTM D3039 for specimen #6:

- Tensile strength: 1159 MPa (168 ksi)
- Tensile Modulus: 108 GPa (15.6 msi)
- Failure strain: 17583 μm/m
- Failure mode: XGM (explosive at midpoint of the gauge length)



Tensile specimen used for testing

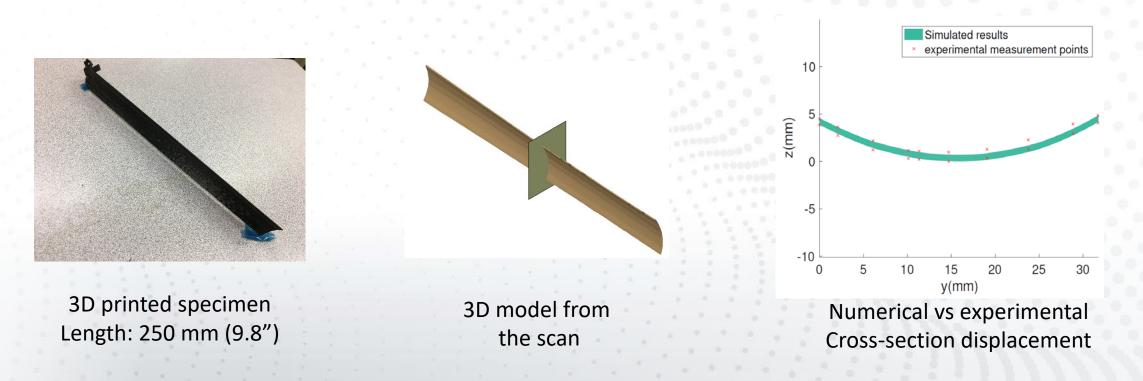
Thermal testing results per ASTM D3418-15

- Differential Scanning Calorimetry (DSC) testing
- Glass transition temperature (T_g) of 142.7 ^oC (288.9 ^oF).
- Melting temperature of 347.7 °C (657.9 °F).
- Cold crystallization was observed.

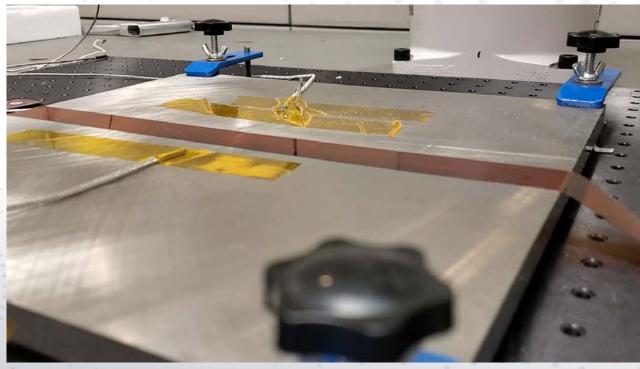


Thermal history for 1st Heating ramp

Thermal history for 2nd Heating ramp


- 3D printing on an aluminum build platform
- 0 deg orientation with a total width of 31.75 mm (1.25")
- Warping was observed with room-temp. and 165 °C (329 °F) bed

3D printing of 0° specimen on an aluminum build platform



- A laser-based 3D scanner created the 3D model of the warped specimen
- A simulation model was used to predict the deformed shape

- Tensile specimens on a stainless steel build platform
- 0 deg fiber orientation with a speed of 10 mm/s (23.6"/min)
- Nozzle with two dowel pins, no feeding or cutting
- Nozzle temperature of 380 °C (716°F) with room-temp and 165 °C (329°F) bed

3D printing of 0° specimen on a stainless steel build platform

Tensile testing

- Specimen set #7: room temperature build platform
- Specimen set #8: 165 °C (329 °F) build platform

	Young modulus		Strength		Failure strain	
Specimen set	Mean (GPa)	CV (%)	Mean (MPa)	CV (%)	Mean (%)	CV (%)
7	111.9	4.7%	1282.1	4.6%	1.8	7.7%
8	108.1	6.9%	1237.7	12.5%	1.7	22.2%

Specimens after trimming

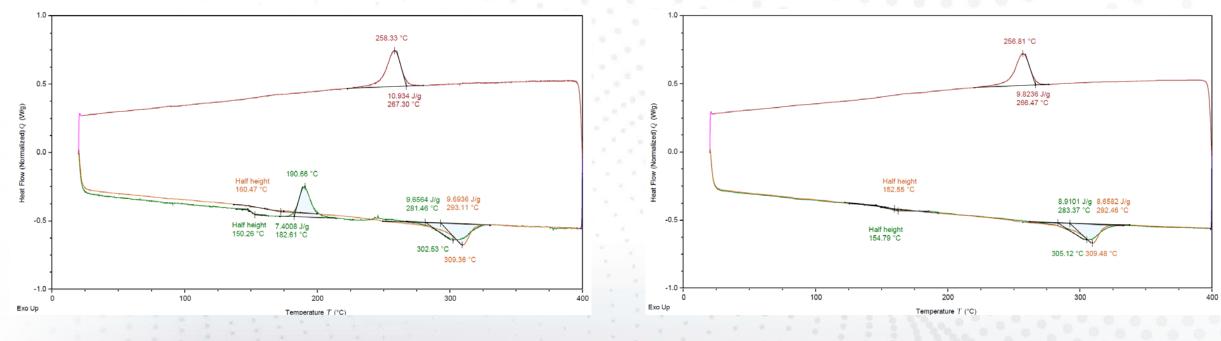
Tensile specimens after testing

- Failure mode for all specimens:
 - SMC (long-splitting, multiple areas, various)

Specimens after esting

Thermal testing results :

- Differential Scanning Calorimetry (DSC) testing
- Specimen set 7: room-temperature be
- Specimen set 8: 165 °C bed (329 °F)


Parameter	Specimen 7-1	Specimen 8-2				
First heating ramp						
Glass transition temperature (°C)	150.26	154.79				
Crystallization extrapolated onset temperature (°C)	182.61	N/A				
Crystallization peak temperature (°C)	190.66	N/A				
Melting extrapolated onset temperature (°C)	281.46	283.37				
Melting peak temperature (°C)	302.53	305.12				
Enthalpy of fusion (J/g)	9.6564	8.9101				
Cold crystallization	Yes	No				

Thermal testing results :

• DSC Graph

the first heating (green), cooling (red), and second heating ramps (orange)

DSC graph (specimen set 7)

DSC graph (specimen set 8)

Future work

- The new 3D printing head with feeding and cutting is robust
 - Maintaining the nozzle and bed temperature
 - Feeding and cutting the material properly
- Minimum turning radius is under investigation
- Short beam strength (SBS) or Isopescu specimens

Questions?

