

PERFORMANCE COMPOSITE REINFORCEMENTS

NCF REINFORCEMENTS FOR PULTRUSION APPLICATIONS: KEY ATTRIBUTES FOR SUCCESSFUL PARTS

TREVOR GUNDBERG, P.E. VICE PRESIDENT OF COMPOSITE ENGINEERING VECTORPLY CORPORATION

ABOUT US

Vectorply specializes in the development, production and sale of multi-axial, non-crimped, stitched reinforcement fabrics (also called NCF). The fabrics are used in combination with various resin systems to create composite products that can out-perform traditional materials. The company provides fabric to several industries throughout the Americas.

VECTORPLY FACILITIES

- Located in Phenix City, AL Vectorply is roughly 105 miles Southwest of Atlanta, GA and just across the boarder from Columbus, GA
 - 30 miles from Auburn, Alabama
 - 105 miles from Atlanta, Georgia
 - 215 miles from Huntsville, Alabama
 - 255 miles from Mobile, Alabama

CURRENT FACILITIES

- 225,000 ft² of office and manufacturing space
- Advanced Composites Reinforcements Center featuring carbon manufacturing and test lab
- 31 machines (LIBA & Mayer)
- 190+ employees
- 3 shifts 7 days per week
- Producing 350+ fabric styles
- Capacity in place to produce 80+ million lbs annually

NON-CRIMP FABRICS

- Non-Crimp Reinforcements, or NCF's: Reinforcement fiber layers/plies assembled and stitched into fabric using warp knitting technology
- The fibers are kept straight and in distinct plies, providing higher levels of mechanical performance compared to random short fiber mat or woven fabrics
- Fiber plies are placed in specific angle orientations as needed to optimize performance and minimize cost
- Standard constructions include:
 - Unidirectional [0°] & [90°]
 - Biaxial: [0°/90°], [+45°/-45°], [+60°/-60°]
 - Triaxial: [0°/+45°/-45°], [+45°/90°/-45°]
 - Quadraxial: [0°/+45°/90°/-45°]

+45°/-45° Carbon NCF

- Reinforcement fibers typically used:
 - Glass Fiber Grades E, ECR, H, R, & S/S2
 - For moderate modulus/specific modulus, and high strength applications
 - Insulative & corrosion resistant
 - Most cost effective
 - Carbon Fiber Standard, intermediate, & high modulus
 - For high specific modulus & strength applications
 - High fatigue resistance
 - Thermally and electrically conductive
 - Galvanically corrosive with metals
 - Polymer Fiber High modulus, composite grade (nonballistic)
 - Includes para-aramid (Kevlar[®]& Twaron[®]), HMPP (Innegra[™]), & others
 - Can provide high specific strength, impact/dynamic loading resistance
 - Very useful in hybridized reinforcements with glass and/or carbon fibers
 - Natural Fiber (Flax)
 - Good vibration damping, moderate mechanical properties, & low environmental impact
 - Can still have matrix-fiber interface and availability issues

• Fabric options

- Vary individual ply Fiber Areal Weight (FAW)
- Ply stacking sequence can be altered
- Hybridize within a ply (intraply) or within the fabric (interply)
- Can attach "substrates" to one/both sides
 - Veils (glass or polymer fiber based) or mats for low surface profile or higher resin content
 - Traditional CFM layers (0.75 -> 2oz/ft²) are routinely added to NCF's as substrates
 - Other fabrics or meshes to add other functionalities (thermal/electrical properties)
 - More efficient tracking through die compared to unattached veil/mat/fabric

Intraply Hybrid: E-glass, Carbon, & Aramid

Interply Hybrid: E-glass & Carbon

- Multiaxial NCF's provide efficient continuous fiber reinforcement to pultruded components
 - 0° plies of [0°/90°] biaxials, [0°/+45°/-45°] warp triaxials, & [0°/+45°/90°/-45°] quadraxials
 - Provide bending & in-plane tensile/compressive stiffness and strength along the pultruded beam profile
 - Can replace layers of single end roving
 - Smaller fabric creels replace large roving creels, saving space and set up time
 - Fabric allows for more efficient tracking through dies

- Bias angle plies (i.e. [+45°/-45°], [+60°/-60°]) of biaxials, triaxials, & quadraxials
 - Provide shear & torsional stiffness and strength along the pultruded beam profile
 - Not possible to efficiently orient continuous fibers at bias angles with single end roving unless they are in a fabric form
 - Quasi-isotropy allows for other functionality such as increased fastener bearing strength & radius/corner strengthening
 - 90° plies provide dry fabric stability (consistent fabric width), increases transverse stiffness/strength & shear web buckling resistance

NCF PARAMETERS

- Effect on Processing & Composite Properties
 - Stitch Yarn
 - Yarn Size (Dtex or denier)
 - Lighter → Heavier: Increase in stability & fish-eye size; Lower microcrack resistance & fiber content
 - Gauge (Stitches per Unit Width)
 - Low → High: Increase in stability & stiffness, lower fiber content
 - CPI (Stitches per Unit Length)
 - Low → High: Increase in stability, stiffness, permeability, & cost
 - Run-in (Amount of Yarn per Unit Length)
 - Low → High: Reduction in tension, fish-eye size, & permeability; Increase in fiber content, microcrack resistance, & drapeability

NCF PARAMETERS

- Effect on Processing & Composite Properties
 - Stitch Pattern
 - Chain: Consistent fish-eye size, high columniation of tows (better compression properties) & drapeability
 - Tricot: High stabilization, inconsistent fish-eye size, in-plane fiber waviness (lower compression properties)
 - Modified Tricot: Combination of Chain and Tricot
 - Combination of properties

NCF CHALLENGES

- PET stitching can hamper performance in high temperature applications and resins
 - High temp stitch yarns are in development
- Warp unidirectional NCF's need a substrate
- Use of small tow (> 12K) carbon or yarn-style glass fibers can be difficult to process
- Added bias angle layers and fabric ply stacking can complicate extension-bending-twisting coupling effects
 - Can induce warping when using high-shrink resin systems with non-symmetric laminate schedules
- High dry fabric integrity/stiffness can cause issues with forming to tight radii compared to glass mats, polymer veils, and/or uni roving

NCF VS CFM

CFM Laminate #1

- 1 1oz Nexus Veil pultruded
- 2 M8643 CFM 2oz pultruded
- 3 113 yield Roving: 10 EPI pultruded
- 4 M8643 CFM 2oz pultruded
- 5 1oz Nexus Veil pultruded

NCF Laminate #1

- 1 1oz Nexus Veil pultruded
- 2 E-TTX 2300 pultruded
- 3 113 yield Roving: 10 EPI pultruded
- 4 E-TTX 2300 pultruded
- 5 1oz Nexus Veil pultruded
- Comparing Equivalent Flexural Stiffness Laminates (EI)
 - Same resin properties
 - Same surface veils
 - Same roving layer end count and yield
 - Only differences are the CFM and NCF layers
 - CFM: 2oz/ft²
 - NCF: 23oz/yd² [+45°/90°/-45°] weft triaxial, 90° FAW dominant

NCF VS CFM

NCF Laminate #1

CFM Laminate #1

	1	1oz Nexus	s Veil - pultru	lded	1	1oz Nexus	s Veil - pultrude	d	
	2	M8643 CF	FM 2oz - pult	truded	2	E-TTX 23	00 - pultruded		
	3	113 yield F	Roving: 10 E	PI - pultruded	3	113 yield l	Roving: 10 EPI	- pultruded	
	4	M8643 CF	M 2oz - puli	truded	4	E-TTX 23	00 - pultruded		
	5	1oz Nexus	s Veil - pultru	lded	5	1oz Nexus	s Veil - pultrude	ed	
Total Wt.	L		1.302]		1.101		lb/ft²
Thickness			0.157				0.118		in
Wf			47.438				63.724		%
Vf			30.294				45.771		%

NCF VS CFM

CFM	Laminate	#'

1 1	10Z	Nexus	Veil -	pultrudeo
-----	-----	-------	--------	-----------

2 M8643 CFM 2oz - pultruded

3 113 yield Roving: 10 EPI - pultruded

4 M8643 CFM 2oz - pultruded

5 1oz Nexus Veil - pultruded

NCF Laminate #1

- 1 1oz Nexus Veil pultruded
- 2 E-TTX 2300 pultruded
- 3 113 yield Roving: 10 EPI pultruded
- 4 E-TTX 2300 pultruded

5 1oz Nexus Veil - pultruded

0° Modulus, Ex	2.919	3.931	Msi
90° Modulus, Ey	1.406	2.652	Msi
0° Flex. Modulus, Exf	1.163	1.994	Msi
90° Flex. Modulus, Eyf	1.003	2.585	Msi
Shear Modulus, Gxy	0.475	0.792	Msi

VECTORPLY DIGITAL KNOWLEDGE CENTER

- Launched at CAMX 2021
- Online platform for composite education and information
 - VectorLam tutorial series
 - Processing tips and instruction
 - Product highlights and benefits
 - Customer features and case studies
 - Product line breakdowns
 - Engineering and testing capabilities explained
 - Growing addition designed to educate visitors

※VECTORPLY

Thank you!

TGUNDBERG@VECTORPLY.COM

WWW.VECTORPLY.COM