# Successes & Challenges during the Development of a Dynamically Controlled Robotic Induction Welding System

**Technology maturity cycle from Lab to Production** 

**Evan Young & John Monsees** 

"Future Org" Aerospace



#### Content

- About "Future Org"
- Challenge of funding ideas
- Successes & Challenges in technology development case study
- Next Steps for industrial revolution for composite structure
- Q&A

#### **Presenters**

- Evan Young Head of Engineering for "Future Org"
- John Monsees Chief R&D Technologist for "Future Org"



# About "Future Org" Aerospace

"Future Org"is a premier manufacturer of cutting-edge composite components and assemblies at all levels of complexity, with products installed on the industry's most advanced commercial and military aircraft.

As a US-based company with a global footprint of nearly 1.6M square feet of state-of-the-art facilities, "Future Org"has the capabilities and resources to solve the market's toughest challenges with Quality Assured.

#### **Our Locations**

RED OAK, TX



- 123-acre site
- 38 miles SE of DFW Int'l Airport
- 772,000 ft<sup>2</sup> of manufacturing space
- 350 employees
- Large Complex Structural Assembly
- AS9100D and NADCAP Certified

MILLEDGEVILLE, GA



- 165-acre site
- 93 miles SE of Atlanta, GA
- 650,000 ft<sup>2</sup> of manufacturing space
- 270 employees
- Premier Composite Manufacturing
- AS9100D and NADCAP Certified

RAYONG, THAILAND



- 44-acre site
- 62 miles from Suvarnabhumi Int'l Airport
- 150,000 ft<sup>2</sup> of manufacturing space
- 165 employees
- Low-cost Complex Composite Components
- AS9100D and NADCAP Certified

# **Technology Development**

#### From Lab to Production

Engineers vs. Accountants-











**Technology Development Cycle** 



# The challenge – Induction Welding of Thermoplastics to meet customer needs

- Technical Challenges
  - Is the new innovative idea technically viable?
  - How do we evaluate the technology capability
  - Can we merge dynamic induction welding and robotic process control while developing sufficient joint strength on a repeatable and inspectable basis
  - Can we reduce development time through predictive analysis supported by physical tests

- Organizational Leadership Challenges
  - Is there a market for this technology
  - What is the Return on Investment of pursuing this technology
  - What is the opportunity cost of pursuing this technology versus other potential developmental programs
  - What off-ramps exist at what investment levels



# **Technology Development Case Study**

Successes and Challenges



# The Idea – Develop unique new technology that has industry demand and applications

- Thermoplastic composite unidirectional tape for induction welding
  - Reduce eddy current generation by using UD tape & localized electrical isolation
  - Leap forward industrialization of fusion welding



Computational Electromagnetics

**Applied Thermodynamics** 

**Polymer Chemistry** 

Robotic Automation & Integration





## **Road Map Presented Jan 2018**

-Resistance and Inductive weld development -Initial joint allowables -Supplier welding head, coil, and robot development

Level 3

-Flying
Demonstrator
Design & Analysis
-Heated leading
edge design &
analysis
-Welding robot
delivery & Center

of Excellence standup -Proof of concept wing box

Level 4 Level 5

-Flying
demonstration
part fabrication &
delivery
-Material
properties,
process
specifications, &
material
equivalency
-NDI and Quality

program complete

Level 6

-Full scale article

static, fatigue,
BVID, impact, and
lightning test
programs
complete
-Material
certification path
defined and
reviewed by
authorities

Level 7

-Certification requirement compliant assemblies fabricated and ready for flight tests

| CY | Q2 2018    | Q3 2018 | Q4 2018 | Q1 2019 | Q2 2019 | Q3 2019 | Q4 2019 | Q1 2020 | Q2 2020 | Q3 2020 | Q4 2020 | Q1 2021 | Q2 2021 | Q3 2021 | Q4 2021 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|    | Leve       | el 3    |         |         |         |         |         |         |         |         |         |         |         |         |         |
|    | Le         | vel 4   |         |         |         |         |         |         |         |         |         |         |         |         |         |
|    |            |         |         | Le      | evel 5  |         |         |         |         |         |         |         |         |         |         |
|    |            |         |         |         |         |         |         |         | Level   | 6       |         |         |         |         |         |
|    | <b>2</b> 4 | MA      |         |         |         |         |         |         |         |         | Level   | 7       |         |         |         |

| TRL | Plan      | Actual   |
|-----|-----------|----------|
| 3   | Dec 2018  | Dec 2018 |
| 4   | June 2019 | Oct 2019 |
| 5   | Oct 2020  | Feb 2021 |
| 6   | June 2021 | TBD      |
| 7   | Dec 2021  | TBD      |

Present logical and measurable technology maturation = funding

## Fusion Welding technical challenges







### **Technology Achievements**



Technology Validation Q3 2018



Assembly proof of concept Q2 2019









Robotic welding head Q1 2019



TRL 5 Achievement Q1 2021

# Next Steps for industrial revolution for composite structure

Is there a path to production?



#### Path to Production

- "Future Org" is a tier 1 structures manufacturer
- Research to date shows promise of the technology
  - Capability to weld dis-similar structure
  - Capability to weld a closed box assembly
  - Capability to demonstrate strong & repeatable joints
  - Capability to reduce manufacturing time and increase flexibility
- OEM applications and requirements are needed



## **Thank You**

• Q&A

