Development of Bambusa tulda-reinforced different biopolymer matrix green composites and MCDM-based sustainable material selection for automobile applications

May 15, 2024

Abstract

A growing awareness of sustainability issues and the environment has prompted researchers to focus on natural alternatives. Natural fiber composites (NFCs) have been successful in drawing attention to their applicability as a replacement for traditional materials on a worldwide scale. In the present study, the effect of different polymer matrices on the physical, mechanical, and thermal properties of bamboo fiber-reinforced biocomposites is experimentally investigated. Four types of epoxy matrices are used for developing four different NFCs (S1, S2, S3, and S4) with a 30% bamboo fiber loading, and their analyses have been conducted. The experimental investigation reveals that S1 types of composites have the lowest density (1.02 g/cm^3), greater bio-content (61.78%), highest tensile modulus (6.98 GPa), higher flexural strength (154.8 MPa), and flexural modulus (8.42 GPa). In contrast, S2 types of composites show the lowest moisture absorption (4.49%) and thickness swelling (7.37%) as well as the highest tensile strength (144.76 MPa), greater storage modulus (8.82 GPa), and glass transition temperature (111.72 °C). The lowest void content (1.2%) and hardness value (97.6) are observed for S3 kinds of composites. On the other hand, S4 kinds of composite are the least expensive. The best material among these four for use in automobile interior parts has been selected using an MCDM-based material selection and optimization approach, VIKOR, and the sensitivity analysis of the process has been done. VIKOR’s process recommends S2-type composites over the other three types. However, these biocomposites have some limitations such as hydrophilicity, bad interfacial bonding, and difficult fiber extraction methods.

Citation

Saha, A., Kulkarni, N.D., & Kumari, P. (2023). Development of Bambusa tulda-reinforced different biopolymer matrix green composites and MCDM-based sustainable material selection for automobile applications. Environment, Development and Sustainability, 1-37.